Log in

Evaluation of an automatic method for forensic age estimation by magnetic resonance imaging of the distal tibial epiphysis—a preliminary study focusing on the 18-year threshold

  • Population Data
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The contribution of magnetic resonance imaging to forensic age estimation of living individuals is a subject of ongoing research. Several studies have focused on the wrist, clavicle, knee, and foot, and shown interesting results regarding the 18-year threshold. Authors have developed various staging systems for epiphyseal growth plate maturation. However, the procedure is observer-dependent and requires experience and a certain time-learning process. To reduce these pitfalls, we have developed an automatic method based on the analysis of variations of gray levels within the epiphyseal–metaphyseal junction. This method was tested on 160 MRI scans of the distal tibial epiphysis in a sample of individuals aged from 8 to 25 years old, after intensity non-uniformity correction of all images. Results showed that in our sample, 97.4 % of males and 93.9 % of females aged 18 years or more would be correctly classified using this method. To our knowledge, automatic methods for MRI analysis have not been used in the field of age estimation yet. Further studies should be performed to assess the validity of this procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cunha E, Baccino E, Martrille L, Ramsthaler F, Prieto J, Schuliar Y, Lynnerup N, Cattaneo C (2009) The problem of aging human remains and living individuals: a review. Forensic Sci Int 193:1–13

    Article  CAS  PubMed  Google Scholar 

  2. Ritz-Timme S, Cattaneo C, Collins MJ, Waite ER, Schütz HW, Kaatsch HJ, Borrman HIM (2000) Age estimation: the state of the art in relation to the specific demands of forensic practice. Int J Legal Med 113:129–136

    Article  CAS  PubMed  Google Scholar 

  3. Schmeling A, Olze A, Reisinger W, Geserick G (2001) Age estimation of living people undergoing criminal proceedings. Lancet 358:89–90

    Article  CAS  PubMed  Google Scholar 

  4. Schmeling A, Olze A, Reisinger W, Geserick G (2004) Forensic age diagnostics of living people undergoing criminal proceedings. Forensic Sci Int 144:243–245

    Article  CAS  PubMed  Google Scholar 

  5. Schmeling A, Geserick G, Reisinger W, Olze A (2007) Age estimation. Forensic Sci Int 165:178–181

    Article  CAS  PubMed  Google Scholar 

  6. Schmeling A, Grundmann C, Fuhrmann A, Kaatsch HJ, Knell B, Ramsthaler F, Reisinger W, Riepert T, Ritz-Timme S, Rösing FW, Rötzsher K, Geserick G (2008) Criteria for age estimation in living individuals. Int J Legal Med 122:457–460

    Article  CAS  PubMed  Google Scholar 

  7. Quirmbach F, Ramsthaler F, Verhoff MA (2009) Evaluation of the ossification of the medial clavicular epiphysis with a digittal ultrasonic system to determine the age threshold of 21years. Int J Legal Med 123:241–245

    Article  PubMed  Google Scholar 

  8. Schmidt S, Schmeling A, Zwiesigk P, Pfeiffer H, Schulz R (2011) Sonographic evaluation of apophyseal ossification of the iliac crest in forensic age diagnostics in living individuals. Int J Legal Med 125:271–276

    Article  PubMed  Google Scholar 

  9. Schmidt S, Schiborr M, Pfeiffer H, Schmeling A, Schulz R (2013) Age dependence of epiphyseal ossification of the distal radius in ultrasound diagnostics. Int J Legal Med 127:831–838

    Article  CAS  PubMed  Google Scholar 

  10. Schmidt S, Mühler M, Schmeling A, Reisinger W, Schulz R (2007) Magnetic resonance imaging of the clavicular ossification. Int J Legal Med 121:321–324

    Article  PubMed  Google Scholar 

  11. Hillewig E, De Tobel J, Cuche O, Vandemaele P, Piette M, Verstraete K (2011) Magnetic resonance imaging of the medial extremity of the clavicle in forensic bone age determination: a new four-minute approach. Eur Radiol 21:757–767

    Article  PubMed  Google Scholar 

  12. Hillewig E, Degroote J, Van der Paelt T, Visscher A, Vandemaele P, Lutin B, D’Hooghe L, Vandriessche V, Piette M, Verstraete K (2013) Magnetic resonance imaging of the sternal extremity of the clavicle in forensic age estimation : towards more sound age estimates. Int J Legal Med 127:677–689

    Article  CAS  PubMed  Google Scholar 

  13. Dvorak J, George J, Junge A, Hodler J (2007) Age determination by magnetic resonance imaging of the wrist in adolescent male football players. Br J Sports Med 41:45–52

    Article  PubMed Central  PubMed  Google Scholar 

  14. Dvorak J, George J, Junge A, Hodler J (2007) Application of MRI of the wrist for age determination in international U-17 soccer competition. Br J Sports Med 41:497–500

    Article  PubMed Central  PubMed  Google Scholar 

  15. Dvorak J (2009) Detecting over-age players using wrist MRI: science partnering with sport to ensure fair play. Br J Sports Med 43:884–885

    Article  PubMed  Google Scholar 

  16. George J, Nagendran J, Azmi K (2012) Comparison study of growth plate fusion using MRI versus plain radiographs as used in age determination for exclusion of overaged football players. Br J Sports Med 46:273–278

    Article  PubMed  Google Scholar 

  17. Dedouit F, Auriol J, Rousseau H, Rougé D, Crubézy E, Telmon N (2012) Age assessment by magnetic resonance imaging of the knee: a preliminary study. Forensic Sci Int 217:232.e1–232.e7

    Article  Google Scholar 

  18. Jopp E, Schröder I, Maas R, Adam G, Püschel K (2010) Proximale tibiaepiphyse im magnetresonanztomogramm. Neue Möglichkeit zur Altersbestimmung bei Lebenden? Rechtsmedizin 20:464–468

    Article  Google Scholar 

  19. Saint-Martin P, Rérolle C, Dedouit F, Bouilleau L, Rousseau H, Rougé D, Telmon N (2013) Age estimation by magnetic resonance imaging of the distal tibial epiphysis and the calcaneum. Int J Legal Med 127:1023–1030

    Article  PubMed  Google Scholar 

  20. Lynnerup N, Belard E, Buch-Olsen K, Sejrsen B, Damgaard-Pedersen K (2008) Intra- and interobserver error of the Greulich–Pyle method as used on a Danish forensic sample. Forensic Sci Int 179:242.e1–242.e6

    Article  CAS  Google Scholar 

  21. Schmeling A, Schulz R, Reisinger W, Mühler M, Wernecke KD, Geserick G (2004) Studies on the time frame for ossification of the medial clavicular epiphyseal cartilage in conventional radiography. Int J Legal Med 118:5–8

    Article  PubMed  Google Scholar 

  22. Cameriere R, De Luca S, De Angelis D, Merelli V, Giuliodori A, Cingolani M, Cattaneo C, Ferrante L (2012) Reliability of Schmeling’s stages of ossification of medial clavicular epiphyses and its validity to assess 18years of age in living subjects. Int J Legal Med 126:923–932

    Article  CAS  PubMed  Google Scholar 

  23. Bellon EM, Haacke EM, Coleman PE, Sacco DC, Steiger DA, Gangarosa RE (1986) MR Artifacts: a review. Am J Roentgenol 147:1271–1281

    Article  CAS  Google Scholar 

  24. McKern TW, Stewart TD (1957) Skeletal age changes in young American males analyzed from the standpoint of age determination. Technical Report EP-45. Environmental Protection Research Division, HQ=Quatermaster Research and Development Command, United States Army, Natick, MA

  25. Scheuer L, Black SM (2000) Developmental juvenile osteology. Elsevier/Academic, Amsterdam

    Google Scholar 

  26. Bass W (2005) Human osteology—a laboratory and field manual of the human skeleton. Archaeological Society, Columbia

    Google Scholar 

  27. Cardoso HF (2008) Epiphyseal union at the innominate and lower limb in a modern Portuguese skeletal sample, and age estimation in adolescent and young adult male and female skeletons. Am J Phys Anthropol 135:161–170

    Article  PubMed  Google Scholar 

  28. Davies DA, Parsons FG (1927) The age order of the appearance and union of the normal epiphyses as seen by X-rays. J Anat 62:58–71

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Flecker H (1932) Roentgenographic observations of the times of appearance of epiphyses and their fusions with the diaphyses. J Anat 67:118–164

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Hoerr NL, Pyle SI, Francis CC (1962) Radiographic atlas of skeletal development of the foot and ankle—a standard of reference. Thomas, Springfield

    Google Scholar 

  31. Ogden JA, McCarthy SM (1983) Radiology of postnatal skeletal development. VIII. Distal tibia and fibula. Skelet Radiol 10:209–220

    Article  CAS  Google Scholar 

  32. Banerjee KK, Agrawal BB (1998) Estimation of age from epiphyseal union at wrist and ankle joints in the capital city of India. Forensic Sci Int 98:31–39

    Article  CAS  PubMed  Google Scholar 

  33. Crowder C, Austin D (2005) Age ranges of epiphyseal fusion in the distal tibia and fibula of contemporary males and females. J Forensic Sci 50:1001–1007

    Article  PubMed  Google Scholar 

  34. Belaroussi B, Milles J, Carme S, Zhu YM, Benoit-Cattin H (2006) Intensity non-uniformity correction in MRI: existing methods and their validation. Med Imaging Anal 10:234–246

    Article  Google Scholar 

  35. Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87–97

    Article  CAS  PubMed  Google Scholar 

  36. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29:1310–1320

    Article  PubMed Central  PubMed  Google Scholar 

  37. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30:1323–1341

    Article  PubMed Central  PubMed  Google Scholar 

  38. Boyes RG, Gunter JL, Frost C, Janke AL, Yeatman T, Hill DLG, Bernstein MA, Thompson PM, Weiner MW, Schuff N, Alexander GE, Killiany RJ, DeCarli C, Jack CR, Fox NC for the ADNI Study (2008) Intensity non-uniformity correction using N3 on 3-T scanners with multischannel phased array coils. Neuroimage 39:1752–1762

    Article  PubMed Central  PubMed  Google Scholar 

  39. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN: 3-9000051-07-0 http://www.R-project.org

  40. Iscan MY (1989) Age markers in the human skeleton. Thomas, Springfield

    Google Scholar 

  41. Brewer JB, Magda S, Airriess C, Smith ME (2009) Fully-automated quantification of regional brain volumes for improved detection of focal atrophy in Alzheimer disease. AJNR Am J Neuroradiol 30:578–580

    Article  CAS  PubMed  Google Scholar 

  42. Chupin M, Gérardin E, Cuingnet R, Boutet C, Lemieux L, Lehéricy S, Benali H, Garnero L, Colliot O, the Alzheimer’s Disease Neuroimaging Initiative (2009) Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI. Hippocampus 19:579–587

    Article  PubMed Central  PubMed  Google Scholar 

  43. Cuingnet R, Gerardin E, Tessieras J, Auzias G, Lehéricy S, Habert MO, Chupin M, Benali H, Colliot O, The Alzheimer’s Disease Neuroimaging Initiative (2011) Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56:766–781

    Article  PubMed  Google Scholar 

  44. Constantinides C, Roullot E, Lefort M, Frouin F (2012) Fully automated segmentation of the left ventricle applied to cine MR images: description and results on a database of 45 subjects. Conf Proc IEEE Eng Med Biol Soc 2012:3207–3210

    PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline Saint-Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saint-Martin, P., Rérolle, C., Dedouit, F. et al. Evaluation of an automatic method for forensic age estimation by magnetic resonance imaging of the distal tibial epiphysis—a preliminary study focusing on the 18-year threshold. Int J Legal Med 128, 675–683 (2014). https://doi.org/10.1007/s00414-014-0987-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-014-0987-z

Keywords

Navigation