Log in

Postmortem biochemistry and immunohistochemistry of chromogranin A as a stress marker with special regard to fatal hypothermia and hyperthermia

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Chromoganin A (CgA) is widely distributed in the secretory granules of endocrine and neuroendocrine cells and cosecreted with hormones such as catecholamines. The present study investigated postmortem serum and cerebrospinal fluid (CSF) levels of CgA in comparison with those of catecholamines, and also cellular CgA immunopositivity in the hypothalamus, adenohypophysis and adrenal medulla to assess forensic pathological significance. Serial medicolegal autopsy cases (n = 298, within 3 days postmortem) were used. Serum and CSF CgA levels were independent of the gender or age of subjects or postmortem time. The most characteristic findings were seen for fatal hypothermia (cold exposure), hyperthermia (heat stroke) and intoxication. Serum CgA levels were lower for hypothermia and intoxication than for other causes of death (p < 0.05), while CSF CgA levels were higher for hypothermia (p < 0.0001). A negative correlation was detected between serum and CSF CgA levels for hypothermia (R = 0.552, p < 0.05). Correlations between serum levels of CgA and catecholamines (adrenaline, noradrenaline and dopamine) were evident for hyperthermia (R = 0.632–0.757, p < 0.05 to <0.01), but there was no significant correlation between CgA and catecholamine levels in CSF. Cellular CgA immunopositivity in the hypothalamus, adenohypophysis and adrenal medulla varied extensively among cases in each group. However, CgA immunopositivity in hypothalamus neurons was lower for hypothermia than other causes of death including hyperthermia and intoxication. These observations suggest characterictic neuroendocrinal activation in fatal cases of hypo- and hyperthermia and also intoxication. CgA may be a useful biochemical and immunohistochemical marker for investigating these causes of death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Goldstein DS, Kopin IJ (2008) Adrenomedullary, adrenocortical, and sympathoneural responses to stressors: a meta-analysis. Endocr Regul 42:111–119

    PubMed  Google Scholar 

  2. Zhu BL, Ishikawa T, Michiue T et al (2007) Postmortem serum catecholamine levels in relation to the cause of death. Forensic Sci Int 173:122–129

    Article  CAS  PubMed  Google Scholar 

  3. Wilke N, Janssen H, Fahrenhorst C et al (2007) Postmortem determination of concentrations of stress hormones in various body fluids—is there a dependency between adrenaline/noradrenaline quotient, cause of death and agony time? Int J Legal Med 121:385–394

    Article  CAS  PubMed  Google Scholar 

  4. Yoshida C, Ishikawa T, Michiue T et al (2009) Immunohistochemical distribution of chromogranin A in medicolegal autopsy materials. Leg Med 11:231–233

    Article  Google Scholar 

  5. Cryer PE, Wortsman J, Shah SD et al (1991) Plasma chromogranin A as a marker of sympathochromaffin activity in humans. Am J Physiol 260:E243–E246

    CAS  PubMed  Google Scholar 

  6. Helle KB, Corti A, Metz-Boutigue MH et al (2007) The endocrine role for chromogranin A: a prohormone for peptides with regulatory properties. Cell Mol Life Sci 64:2863–2886

    Article  CAS  PubMed  Google Scholar 

  7. Blaschko H, Comline RS, Schneider FH et al (1967) Secretion of a chromaffin granule protein, chromogranin, from the adrenal gland after splanchnic stimulation. Nature 215:58–59

    Article  CAS  PubMed  Google Scholar 

  8. Toda M, Makino H, Nagasawa S et al (2006) Change in salivary physiological stress markers by spa bathing. Biomed Res 27:11–14

    Article  CAS  PubMed  Google Scholar 

  9. Helle KB (1973) Biochemical studies of the chromaffin granule. 3. Redistribution of lipid phosphate, dopamine-beta-hydroxylase and chromogranin A after freezing and thawing of the isolated granule membranes. Biochim Biophys Acta 318:167–180

    Article  CAS  PubMed  Google Scholar 

  10. Helle KB (1971) Biochemical studies of the chromaffin granule. II. Properties of membrane-bound and water-soluble forms of chromogranin A and dopamine- hydroxylase activity. Biochim Biophys Acta 245:94–104

    Article  CAS  PubMed  Google Scholar 

  11. Lindberg I (1991) The new eukaryotic precursor processing proteinases. Mol Endocrinol 5:1361–1365

    Article  CAS  PubMed  Google Scholar 

  12. Ceconi C, Ferrari R, Bachetti T et al (2002) Chromogranin A in heart failure; a novel neurohumoral factor and a predictor for mortality. Eur Heart J 23:967–974

    Article  CAS  PubMed  Google Scholar 

  13. O'Connor DT, Bernstein KN (1984) Radioimmunoassay of chromogranin A in plasma as a measure of exocytotic sympathoadrenal activity in normal subjects and patients with pheochromocytoma. N Engl J Med 311:764–770

    Article  PubMed  Google Scholar 

  14. Carmichael SW, Stoddard SL, O'Connor DT et al (1990) The secretion of catecholamines, chromogranin A and neuropeptide Y from the adrenal medulla of the cat via the adrenolumbar vein and thoracic duct: different anatomic routes based on size. Neuroscience 34:433–440

    Article  CAS  PubMed  Google Scholar 

  15. Hsiao RJ, Neumann HP, Parmer RJ et al (1990) Chromogranin A in familial pheochromocytoma: diagnostic screening value, prediction of tumor mass, and post-resection kinetics indicating two-compartment distribution. Am J Med 88:607–613

    Article  CAS  PubMed  Google Scholar 

  16. Prengel AW, Lindner KH, Ensinger H et al (1992) Plasma catecholamine concentrations after successful resuscitation in patients. Crit Care Med 20:609–614

    Article  CAS  PubMed  Google Scholar 

  17. Ishikawa T, Quan L, Li DR et al (2008) Postmortem biochemistry and immunohistochemistry of adrenocorticotropic hormone with special regard to fatal hypothermia. Forensic Sci Int 179:147–151

    Article  CAS  PubMed  Google Scholar 

  18. Ishikawa T, Miyaishi S, Tachibana T et al (2004) Fatal hypothermia related vacuolation of hormone-producing cells in the anterior pituitary. Leg Med 6:157–163

    Article  CAS  Google Scholar 

  19. Bunai Y, Akaza K, Jiang WX et al (2008) Fatal hyperthermia associated with excited delirium during an arrest. Leg Med 10:306–309

    Article  Google Scholar 

  20. Kleemann WJ, Schlaud M, Poets CF (1996) Hyperthermia in sudden infant death. Int J Legal Med 109:139–142

    Article  CAS  PubMed  Google Scholar 

  21. Ishikawa T, Hamel M, Zhu BL et al (2008) Comparative evaluation of postmortem serum concentrations of neopterin and C-reactive protein. Forensic Sci Int 179:135–143

    Article  CAS  PubMed  Google Scholar 

  22. Nishikawa Y, Li J, Futai Y et al (1998) Regio-specific radioimmunoassay for human chromogranin A. Biomed Res 19:245–251

    CAS  Google Scholar 

  23. Konecki DS, Benedum UM, Gerdes HH (1987) The primary structure of human chromogranin A and pancreastatin. J Biol Chem 262:17026–17030

    CAS  PubMed  Google Scholar 

  24. Foti A, Kimura S, DeQuattro V et al (1987) Liquid-chromatographic measurement of catecholamines and metabolites in plasma and urine. Clin Chem 33:2209–2213

    CAS  PubMed  Google Scholar 

  25. Ishikawa T, Zhu BL, Miyaishi S et al (2007) Increase in clusterin-containing follicles in the adenohypophysis of drug abusers. Int J Legal Med 121:395–402

    Article  PubMed  Google Scholar 

  26. Ishikawa T, Zhu BL, Li DR et al (2006) Postmortem stability of pituitary hormones in the human adenohypophysis. Leg Med 8:34–38

    Article  CAS  Google Scholar 

  27. Lloyd RV, Cano M, Rosa P, Hille A et al (1988) Distribution of chromogranin A and secretogranin I (chromogranin B) in neuroendocrine cells and tumors. Am J Pathol 130:296–304

    CAS  PubMed  Google Scholar 

  28. Ishikawa T, Zhu BL, Li DR et al (2007) Immunohistochemical investigation of ubiquitin and myoglobin in the kidney in medicolegal autopsy cases. Forensic Sci Int 171:136–141

    Article  CAS  PubMed  Google Scholar 

  29. Zhu BL, Ishikawa T, Michiue T et al (2007) Postmortem cardiac troponin I and creatine kinase MB levels in the blood and pericardial fluid as markers of myocardial damage in medicolegal autopsy. Leg Med 9:241–250

    Article  CAS  Google Scholar 

  30. Børglum T, Rehfeld JF, Drivsholm LB (2007) Processing-independent quantitation of chromogranin a in plasma from patients with neuroendocrine tumors and small-cell lung carcinomas. Clin Chem 53:438–446

    Article  PubMed  Google Scholar 

  31. Winkler H, Fischer-Colbrie R (1992) The chromogranins A and B: the first 25 years and future perspectives. Neuroscience 49:497–528

    Article  CAS  PubMed  Google Scholar 

  32. Kortelainen ML, Huttunen P, Lapinlampi T (1990) Urinary catecholamines in hyperthermia-related deaths. Forensic Sci Int 48:103–110

    Article  CAS  PubMed  Google Scholar 

  33. Maeda H, Zhu BL, Bessho Y et al (2008) Postmortem serum nitrogen compounds and C-reactive protein levels with special regard to investigation of fatal hyperthermia. Forensic Sci Med Pathol 4:175–180

    Article  CAS  PubMed  Google Scholar 

  34. Zhu BL, Ishikawa T, Michiue T et al (2007) Postmortem pericardial natriuretic peptides as markers of cardiac function in medico-legal autopsies. Int J Legal Med 121:28–35

    Article  PubMed  Google Scholar 

  35. Michiue T, Ishikawa T, Quan L et al (2008) Single-stranded DNA as an immunohistochemical marker of neuronal damage in human brain: an analysis of autopsy material with regard to the cause of death. Forensic Sci Int 178:185–191

    Article  CAS  PubMed  Google Scholar 

  36. Sadler DW, Pounder DJ (1995) Urinary catecholamines as markers of hypothermia. Forensic Sci Int 76:227–230

    Article  CAS  PubMed  Google Scholar 

  37. Broessner G, Beer R, Franz G et al (2005) Case report: severe heat stroke with multiple organ dysfunction—a novel intravascular treatment approach. Crit Care 9:R498–R501

    Article  PubMed  Google Scholar 

  38. Zhang D, Lavaux T, Sapin R et al (2009) Serum concentration of chromogranin A at admission: an early biomarker of severity in critically ill patients. Ann Med 41:38–44

    Article  CAS  PubMed  Google Scholar 

  39. Bhatnagar S, Dallman M (1998) Neuroanatomical basis for facilitation of hypothalamic–pituitary–adrenal responses to a novel stressor after chronic stress. Neuroscience 84:1025–1039

    Article  CAS  PubMed  Google Scholar 

  40. Pacák K (2000) Stressor-specific activation of the hypothalamic–pituitary–adrenocortical axis. Physiol Res 49:S11–S17

    PubMed  Google Scholar 

  41. Ulrich G, Ciesielski-Treska J, Taupenot L et al (2002) Chromogranin A-activated microglial cells induce neuronal apoptosis. Ann N Y Acad Sci 971:560–562

    Article  CAS  PubMed  Google Scholar 

  42. Schmidt H, Müller-Werdan U, Hoffmann T et al (2005) Autonomic dysfunction predicts mortality in patients with multiple organ dysfunction syndrome of different age groups. Crit Care Med 33:1994–2002

    Article  PubMed  Google Scholar 

  43. Cao WH, Fan W, Morrison SF (2004) Medullary pathways mediating specific sympathetic responses to activation of dorsomedial hypothalamus. Neuroscience 126:229–240

    Article  CAS  PubMed  Google Scholar 

  44. Kato A, Kammen-Jolly K, Fischer-Colbie R et al (2000) Co-distribution patterns of chromogranin B-like immunoreactivity with chromogranin A and secretoneurin within the human brainstem. Brain Res 852:444–452

    Article  CAS  PubMed  Google Scholar 

  45. Arita K, Uozumi T, Oki S (1993) The function of the hypothalamo-pituitary axis in brain dead patients. Acta Neurochir 123:64–75

    Article  CAS  Google Scholar 

  46. Sugimoto T, Sakano T, Kinoshita Y (1992) Morphological and functional alterations of the hypothalamic–pituitary system in brain death with long-term bodily living. Acta Neurochir 115:31–36

    Article  CAS  Google Scholar 

  47. Ishikawa T, Michiue T, Quan L, Zhao D, Komatsu A, Bessho Y, Maeda H (2009) Morphological and functional alterations in the adenohypophysis in cases of brain death. Leg Med 11:S234–S237

    Article  Google Scholar 

  48. Gavrilovic L, Dronjak S (2005) Activation of rat pituitary–adrenocortical and sympatho-adrenomedullary system in response to different stressors. Neuro Endocrinol Lett 26:515–520

    CAS  PubMed  Google Scholar 

  49. Quan L, Ishikawa T, Michiue T et al (2005) Quantitative analysis of ubiquitin-immunoreactivity in the midbrain periaqueductal gray matter with regard to the causes of death in forensic autopsy. Leg Med 7:151–156

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaki Ishikawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, C., Ishikawa, T., Michiue, T. et al. Postmortem biochemistry and immunohistochemistry of chromogranin A as a stress marker with special regard to fatal hypothermia and hyperthermia. Int J Legal Med 125, 11–20 (2011). https://doi.org/10.1007/s00414-009-0374-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-009-0374-3

Keywords

Navigation