Log in

Atoll garnet: insights from LA-ICP-MS trace element map**

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Atoll garnets are uncommon features that have been recognized in contrasting metamorphic environments worldwide, but their origin remains largely debated. Several models have been proposed to explain their formation, including preferential dissolution of garnet cores by fluid infiltration, polymetamorphism, and the coalescence of subgrains. We report atoll-shaped garnets in an amphibolite facies schist from the Palaeoproterozoic New Quebec Orogen, Canada, and investigate their textural and chemical zoning through petrography, electron probe microanalysis (EPMA) and laser ablation inductively coupled mass spectrometry (LA-ICP-MS) maps. Textural evidence indicates a subhedral poikiloblastic core, an inclusion ring composed of matrix minerals, and a euhedral rim. Major element distribution maps show flat zoning, whereas trace elements show concentric growth zoning. Such characteristics are consistent with rapid, post-kinematic growth involving Rayleigh fractionation of trace elements and coeval with accessory phase breakdown. Our observations rule out the preferential dissolution, polymetamorphism and coalescence models, and support that the formation of atoll garnet in these rocks is best explained by a kinetic control and rapid growth. Our study concludes that the term “atoll” is more descriptive than genetic, and that the physio-chemical mechanisms leading to its formation should be assessed on a case-by-case basis using complementary tools, primarily including trace element map**.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Atherton M, Edmunds W (1966) An electron microprobe study of some zoned garnets from metamorphic rocks. Earth Planet Sci Lett 1(4):185–193

    Article  Google Scholar 

  • Baxter E, Caddick M, Dragovic B (2017) Garnet: A rock-forming mineral petrochronometer. Rev Mineral Geochem 83(1):469–533

    Article  Google Scholar 

  • Boston KR, Rubatto D, Hermann J, Engi, M, Amelin Y (2017) Geochronology of accessory allanite and monazite in the Barrovian metamorphic sequence of the Central Alps, Switzerland: Lithos, 286:502–518

  • Caddick MJ, Konopasek J, Thompson AB (2010) Preservation of garnet growth zoning and the duration of prograde metamorphism. J Petrol 51(11):2327–2347

    Article  Google Scholar 

  • Cao D, Cheng H, Zhang L, Wang K (2018) Origin of atoll garnets in ultra-high-pressure eclogites and implications for infiltration of external fluids. J Asian Earth Sci 160:224–238

    Article  Google Scholar 

  • Carlson WD (2012) Rates and mechanism of Y, REE, and Cr diffusion in garnet. Am Miner 97(10):1598–1618

    Article  Google Scholar 

  • Carlson WD (2011) Porphyroblast crystallization: linking processes, kinetics, and microstructures. Int Geol Rev 53(3–4):406–445

    Article  Google Scholar 

  • Cheng H, Nakamura E, Kobayashi K, Zhou Z (2007) Origin of atoll garnets in eclogites and implications for the redistribution of trace elements during slab exhumation in a continental subduction zone. Am Miner 92(7):1119–1129

    Article  Google Scholar 

  • Cheng H, Nakamura E, Zhou Z (2009) Garnet Lu–Hf dating of retrograde fluid activity during ultrahigh-pressure metamorphic eclogites exhumation. Mineral Petrol 95(3–4):315–326

    Article  Google Scholar 

  • Cooper A (1972) Progressive metamorphism of metabasic rocks from the Haast Schist Group of southern New Zealand. J Petrol 13(3):457–492

    Article  Google Scholar 

  • Cruz MDR (2011) Origin of atoll garnet in schists from the Alpujárride Complex (Central zone of the Betic Cordillera, Spain): implications on the PT evolution. Mineral Petrol 101(3–4):245–261

    Article  Google Scholar 

  • Faryad S, Klápová H, Nosál L (2010) Mechanism of formation of atoll garnet during high-pressure metamorphism. Mineral Mag 74(1):111–126

    Article  Google Scholar 

  • García-Casco A, Torres-Roldán RL (1996) Disequilibrium induced by fast decompression in St− Bt− Grt− Ky− Sil− and metapelites from the Betic Belt (Southern Spain). J Petrol 37(5):1207–1239

    Article  Google Scholar 

  • George F, Gaidies F (2017) Characterisation of a garnet population from the Sikkim Himalaya: insights into the rates and mechanisms of porphyroblast crystallisation. Contrib Miner Petrol 172(7):1–22

    Article  Google Scholar 

  • George F, Gaidies F, Boucher B (2018) Population-wide garnet growth zoning revealed by LA-ICP-MS map**: implications for trace element equilibration and syn-kinematic deformation during crystallisation. Contrib Miner Petrol 173(9):1–22

    Article  Google Scholar 

  • Gieré R, Rumble D, Günther D, Connolly J, Caddick MJ (2011) Correlation of growth and breakdown of major and accessory minerals in metapelites from Campolungo, Central Alps. J Petrol 52(12):2293–2334

    Article  Google Scholar 

  • Godet A, Guilmette C, Labrousse L, Davis DW, Smit MA, Cutts JA, Vanier MA, Lafrance I, Charette B (2020a) Complete metamorphic cycle and long-lived anatexis in the c. 2.1 Ga Mistinibi Complex, Canada. J Metamorphic Geol 38(3):235–264

    Article  Google Scholar 

  • Godet A, Guilmette C, Labrousse L, Smit MA, Davis DW, Raimondo T, Vanier MA, Charette B, Lafrance I (2020b) Contrasting P-T-t paths reveal a metamorphic discontinuity in the New Quebec Orogen: Insights into Paleoproterozoic orogenic processes. Precambrian Res 342(14)

  • Goncalves P, Raimondo T, Paquette JL, Santos de Souza de Oliveira J (2021) Garnet as a monitor for melt–rock interaction: Textural, mineralogical, and compositional evidence of partial melting and melt‐driven metasomatism. J Metamorphic Geol

  • Green JFN (1915) The garnets and streaky rocks of the English Lake District. Mineral Magaz J Mineral Soc 17(81):207–217

    Article  Google Scholar 

  • Guilmette C, Smit MA, van Hinsbergen DJ, Gürer D, Corfu F, Charette B, Maffione M, Rabeau O, Savard D (2018) Forced subduction initiation recorded in the sole and crust of the Semail Ophiolite of Oman. Nat Geosci 11(9):688

    Article  Google Scholar 

  • Henrique-Pinto R, Guilmette C, Bilodeau C, McNicoll V (2017) Evidence for transition from a continental forearc to a collisional pro-foreland basin in the eastern Trans-Hudson Orogen: Detrital zircon provenance analysis in the Labrador Trough, Canada. Precambrian Res 296:181–194

    Article  Google Scholar 

  • Hollister LS (1966) Garnet zoning: an interpretation based on the Rayleigh fractionation model. Science 154(3757):1647–1651

    Article  Google Scholar 

  • Homam SM (2003) Formation of atoll garnet in the Ardara Aureole, NW Ireland

  • Howell D, Griffin W, Pearson N, Powell W, Wieland P, O’Reilly S (2013) Trace element partitioning in mixed-habit diamonds. Chem Geol 355:134–143

    Article  Google Scholar 

  • Hyppolito T, Cambeses A, Angiboust S, Raimondo T, García-Casco A, Juliani C (2018) Rehydration of eclogites and garnet-replacement processes during exhumation in the amphibolite facies. Geol Soc London Special Public 478:473

    Google Scholar 

  • Jarosewich E, Nelen J, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostand Geoanal Res 4(1):43–47

    Article  Google Scholar 

  • Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA (2011a) Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand Geoanalyt Res 35(4):397–429

    Article  Google Scholar 

  • Jochum KP, Wilson SA, Abouchami W, Amini M, Chmeleff J, Eisenhauer A, Hegner E, Iaccheri LM, Kieffer B, Krause J (2011b) GSD-1G and MPI-DING reference glasses for in situ and bulk isotopic determination. Geostand Geoanalyt Res 35(2):193–226

    Article  Google Scholar 

  • Jonnalagadda MK, Karmalkar NR, Duraiswami RA, Harshe S, Gain S, Griffin WL (2017) Formation of atoll garnets in the UHP eclogites of the Tso Morari Complex, Ladakh, Himalaya. J Earth Syst Sci 126(8):1–23

    Article  Google Scholar 

  • Kelly E, Carlson W, Ketcham R (2013) Crystallization kinetics during regional metamorphism of porphyroblastic rocks. J Metamorph Geol 31(9):963–979

    Article  Google Scholar 

  • Kingsbury JA, Miller CF, Wooden JL, Harrison TM (1993) Monazite paragenesis and U-Pb systematics in rocks of the eastern Mojave Desert, California, USA: implications for thermochronometry. Chem Geol 110(1–3):147–167

    Article  Google Scholar 

  • Kohn MJ (2009) Models of garnet differential geochronology. Geochim Cosmochim Acta 73(1):170–182

  • Konrad-Schmolke M, O’Brien PJ, Heidelbach F (2007) Compositional re-equilibration of garnet: the importance of sub-grain boundaries. Eur J Mineral 19(4):431–438

    Article  Google Scholar 

  • Konrad-Schmolke M, O’Brien PJ, de Capitani C, Carswell DA (2008a) Garnet growth at high-and ultra-high pressure conditions and the effect of element fractionation on mineral modes and composition. Lithos 103(3–4):309–332

    Article  Google Scholar 

  • Konrad-Schmolke M, Zack T, O’Brien PJ, Jacob DE (2008b) Combined thermodynamic and rare earth element modelling of garnet growth during subduction: examples from ultrahigh-pressure eclogite of the Western Gneiss Region, Norway. Earth Planet Sci Lett 272(1–2):488–498

    Article  Google Scholar 

  • Kotková J, Harley SL (2010) Anatexis during high-pressure crustal metamorphism: evidence from garnet–whole-rock REE relationships and zircon–rutile Ti–Zr thermometry in leucogranulites from the Bohemian Massif. J Petrol 51(10):1967–2001

    Article  Google Scholar 

  • Kulhánek J, Faryad SW, Jedlicka R, Svojtka M (2021) Dissolution and reprecipitation of garnet during eclogite-facies metamorphism; major and trace element transfer during atoll garnet formation. J Petrol 62(11):7egab077

    Article  Google Scholar 

  • Lanari P, Vidal O, De Andrade V, Dubacq B, Lewin E, Grosch EG, Schwartz S (2014) XMapTools: A MATLAB©-based program for electron microprobe X-ray image processing and geothermobarometry. Comput Geosci 62:227–240

    Article  Google Scholar 

  • Moore S, Carlson W, Hesse M (2013) Origins of yttrium and rare earth element distributions in metamorphic garnet. J Metamorph Geol 31(6):663–689

    Article  Google Scholar 

  • Ortolano G, Visalli R, Cirrincione R, Rebay G (2014) PT-path reconstruction via unraveling of peculiar zoning pattern in atoll shaped garnets via image assisted analysis: an example from the Santa Lucia del Mela garnet micaschists (northeastern Sicily-Italy). Periodico Di Mineralogia 83(2):257–297

    Google Scholar 

  • Passchier C, Trouw R (1998) Deformation mechanisms. Springer, Microtectonics, pp 25–56

    Google Scholar 

  • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: Freeware for the visualisation and processing of mass spectrometric data. J Analyt Atom Spectrom 26(12):2508–2518

    Article  Google Scholar 

  • Pearce NJ, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newslett 21(1):115–144

    Article  Google Scholar 

  • Pearce MA, White AJR, Gazley MF (2015) TCInvestigator: automated calculation of mineral mode and composition contours for thermocalc pseudosections. J Metamorp Geol 33(4):413–425

    Article  Google Scholar 

  • Pouchou J-L, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP.” Springer, Electron probe quantitation, pp 31–75

    Google Scholar 

  • Pyle JM, Spear FS (1999) Yttrium zoning in garnet: coupling of major and accessory phases during metamorphic reactions. Geol Mater Res 1(6):1–49

    Google Scholar 

  • Raimondo T, Payne J, Wade B, Lanari P, Clark C, Hand M (2017) Trace element map** by LA-ICP-MS: assessing geochemical mobility in garnet. Contribut Mineral Petrol 172(4):17

    Article  Google Scholar 

  • Robyr M, Darbellay B, Baumgartner L (2014) Matrix-dependent garnet growth in polymetamorphic rocks of the Sesia zone, Italian Alps. J Metamorph Geol 32(1):3–24

    Article  Google Scholar 

  • Rubatto D, Williams IS, Buick IS (2001) Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contribut Mineral Petrol 140(4):458–468

    Article  Google Scholar 

  • Rubatto D, Burger M, Lanari P, Hattendorf B, Schwarz G, Neff C, Keresztes Schmidt P, Hermann J, Vho A, Günther D (2020) Identification of growth mechanisms in metamorphic garnet by high-resolution trace element map** with LA-ICP-TOFMS. Contribut Mineral Petrol 175:1–19

    Article  Google Scholar 

  • Simard M, Lafrance I, Hammouche H, Legouix C (2013) Géologie de la région de Kuujjuaq et de la Baie d’Ungava (SNRC 24J et 24K). Ministère des Ressources naturelles, Québec v. RG 2013–04, p. 60 pages

  • Skora S, Baumgartner LP, Mahlen NJ, Johnson CM, Pilet S, Hellebrand E (2006) Diffusion-limited REE uptake by eclogite garnets and its consequences for Lu–Hf and Sm–Nd geochronology. Contribut Mineral Petrol 152(6):703–720

    Article  Google Scholar 

  • Smellie J (1974) Formation of atoll garnets from the aureole of the Ardara pluton, Co Donegal, Ireland. Mineral Magaz 39(308):878–888

    Article  Google Scholar 

  • Smith HA, Barreiro B (1990) Monazite U-Pb dating of staurolite grade metamorphism in pelitic schists. Contrib Miner Petrol 105(5):602–615

    Article  Google Scholar 

  • Spear FS (1991) On the interpretation of peak metamorphic temperatures in light of garnet diffusion during cooling. J Metamorph Geol 9(4):379–388

    Article  Google Scholar 

  • Spiess R, Peruzzo L, Prior D, Wheeler J (2001) Development of garnet porphyroblasts by multiple nucleation, coalescence and boundary misorientation-driven rotations. J Metamorphic Geol 19(3):269–290

    Google Scholar 

  • Taylor S, McClennan S (1985) The continental crustal: its composition and evolution. Blackwell, Oxford, p 312

    Google Scholar 

  • Vielzeuf D, Baronnet A, Perchuk A, Laporte D, Baker M (2007) Calcium diffusivity in alumino-silicate garnets: an experimental and ATEM study. Contrib Miner Petrol 154(2):153–170

    Article  Google Scholar 

  • Wardle RJ, James DT, Scott DJ, Hall J (2002) The southeastern Churchill Province: synthesis of a Paleoproterozoic transpressional orogen. Can J Earth Sci 39(5):639–663

    Article  Google Scholar 

  • Whitney DL, Seaton NC (2010) Garnet polycrystals and the significance of clustered crystallization. Contrib Miner Petrol 160(4):591–607

    Article  Google Scholar 

  • Yang P, Rivers T (2000) Trace element partitioning between coexisting biotite and muscovite from metamorphic rocks, Western Labrador: Structural, compositional and thermal controls. Geochim Cosmochim Acta 64(8):1451–1472

    Article  Google Scholar 

  • Yang P, Rivers T (2001) Chromium and manganese zoning in pelitic garnet and kyanite: spiral, overprint, and oscillatory (?) zoning patterns and the role of growth rate. J Metamorph Geol 19(4):455–474

  • Zack T, Kronz A, Foley SF, Rivers T (2002) Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chem Geol 184(1–2):97–122

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by NSERC (DG RGPIN-2020-06400 attributed to CG) and the MERN (#8449-2021-2022-03). Marc Choquette is thanked for his help during analytical acquisition. Loic Labrousse is thanked for fruitful discussion. We acknowledge Matthias Konrad-Schmolke and Freya George for their constructive comments that helped improve this manuscript. Daniela Rubatto is acknowledged for her useful suggestions and editorial handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Godet.

Additional information

Communicated by Daniela Rubatto.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godet, A., Raimondo, T. & Guilmette, C. Atoll garnet: insights from LA-ICP-MS trace element map**. Contrib Mineral Petrol 177, 57 (2022). https://doi.org/10.1007/s00410-022-01924-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-022-01924-7

Keywords

Navigation