Log in

Oxygen isotope record of oceanic and high-pressure metasomatism: a P–T–time–fluid path for the Monviso eclogites (Italy)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Fluids are considered a fundamental agent for chemical exchanges between different rock types in the subduction system. Constraints on the sources and pathways of subduction fluids thus provide crucial information to reconstruct subduction processes. The Monviso ophiolitic sequence is composed of mafic, ultramafic and minor sediments that have been subducted to ~80 km depth. In this sequence, both localized fluid flow and channelized fluids along major shear zones have been documented. We investigate the timing and source of the fluids that affected the dominant mafic rocks using microscale U–Pb dating of zircon and oxygen isotope analysis of mineral zones (garnet, zircon and antigorite) in high-pressure rocks with variable degree of metasomatic modification. In mafic eclogites, Jurassic zircon cores are the only mineralogical relicts of the protolith gabbros and retain δ18O values of 4.5–6 ‰, typical of mantle melts. Garnet and metamorphic zircon that grew during prograde to peak metamorphism display low δ18O values between 0.2 and 3.8 ‰, which are likely inherited from high-temperature alteration of the protolith on the sea floor. This is corroborated by δ18O values of 3.0 and 3.6 ‰ in antigorite from surrounding serpentinites. In metasomatized eclogites within the lower shear zone, garnet rim formed at the metamorphic peak shows a shift to higher δ18O up to 6 ‰. The age of zircons in high-pressure veins and metasomatized eclogites constrains the timing of fluid flow at high pressure at around 45–46 Ma. Although the oxygen data do not contradict previous reports of interaction with serpentinite-derived fluids, the shift to isotopically heavier oxygen compositions requires contribution from sediment-derived fluids. The scarcity of metasediments in the Monviso sequence suggests that such fluids were concentrated and fluxed along the lower shear zone in a sufficient amount to modify the oxygen composition of the eclogitic minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Angiboust S, Agard P (2010) Initial water budget: the key to detaching large volumes of eclogitized oceanic crust along the subduction channel? Lithos 120:453–474

    Article  Google Scholar 

  • Angiboust S, Agard P, Raimbourg H, Yamato P, Huet B (2011) Subduction interface processes recorded by eclogite-facies shear zones (Monviso, W. Alps). Lithos 127:222–238

    Article  Google Scholar 

  • Angiboust S, Agard P, Yamato P, Raimbourg H (2012a) Eclogite breccias in a subducted ophiolite: a record of intermediate depth earthquakes? Geology 40:707–710

    Article  Google Scholar 

  • Angiboust S, Langdon R, Agard P, Waters D, Chopin C (2012b) Eclogitization of the Monviso ophiolite (W. Alps) and implications on subduction dynamics. J Metamorph Geol 30:37–61

    Article  Google Scholar 

  • Angiboust S, Pettke T, De Hoog JCM, Caron B, Oncken O (2014) Channelized fluid flow and eclogite-facies metasomatism along the subduction shear zone. J Petrol 55:883–916

    Article  Google Scholar 

  • Ayers JC, Loflin M, Miller CF, Barton MD, Coath CD (2006) In situ oxygen isotope analysis of monazite as a monitor of fluid infiltration during contact metamorphism: Birch Creek Pluton aureole, White Mountains, eastern California. Geology 34:653–656

    Article  Google Scholar 

  • Balestro G, Fioraso G, Lombardo B (2013) Geological map of the Monviso Massif (Western Alps). J Maps 9:623–634

    Article  Google Scholar 

  • Baxter EF, Caddick MJ (2013) Garnet growth as a proxy for progressive subduction zone dehydration. Geology 41:643–646

    Article  Google Scholar 

  • Bebout GE, Barton MD (1989) Fluid flow and metasomatism in a subduction zone hydrothermal system: Catalina Schist terrane, California. Geology 17:976–980

    Article  Google Scholar 

  • Black LP, Kamo SL, Allen CM, Aleinikoff JM, Davis DW, Korsch RJ, Foudoulis C (2003) TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology. Chem Geol 200:155–170

    Article  Google Scholar 

  • Cartwright I, Barnicoat AC (1999) Stable isotope geochemistry of Alpine ophiolites: a window to ocean-floor hydrothermal alteration and constraints on fluid-rock interaction during high-pressure metamorphism. J Earth Sci 88:219–235

    Google Scholar 

  • Cook-Kollars J, Bebout GE, Collins NC, Angiboust S, Agard P (2014) Subduction zone metamorphic pathway for deep carbon cycling: I. Evidence from HP/UHP metasedimentary rocks, Italian Alps. Chem Geol 386:31–48

    Article  Google Scholar 

  • Dragovic B, Samanta LM, Baxter EF, Selverstone J (2012) Using garnet to constrain the duration and rate of water-releasing metamorphic reactions during subduction: an example from Sifnos, Greece. Chem Geol 314–317:9–22

    Article  Google Scholar 

  • Eiler JM (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. In: Valley JW, Cole DR (eds) Stable isotope geochemistry, vol 43. Mineralogical Society of America, Washington

    Google Scholar 

  • Eiler JM, Valley JW, Graham CM, Baumgartner LP (1995) Ion microprobe evidence for the mechanisms of stable isotope retrogression in high-grade metamorphic rocks. Contrib Mineral Petrol 118:365–378

    Article  Google Scholar 

  • Errico JC, Barnes JD, Strickland A, Valley JW (2013) Oxygen isotope zoning in garnets from Franciscan eclogite blocks: evidence for rock-buffered fluid interaction in the mantle wedge. Contrib Mineral Petrol 166:1161–1176

    Article  Google Scholar 

  • Früh-Green G, Scambelluri M, Vallis F (2001) O-H isotope ratios of high pressure ultramafic rocks: implications for fluid sources and mobility in the subducted hydrous mantle. Contrib Mineral Petrol 141:145–159

    Article  Google Scholar 

  • Gregory RT, Taylor HP (1981) An oxygen isotope profile in a section of Cretaceous Oceanic Crust, Samail Ophiolite, Oman: evidence for δ18O buffering of the oceans by deep (> 5 km) seawater-hydrothermal circulation at mid-ocean ridges. J Geophys Res 86:2737–2755

    Article  Google Scholar 

  • Groppo C, Castelli D (2010) Prograde P–T evolution of a lawsonite eclogite from the Monviso meta-ophiolite (Western Alps): dehydration and redox reactions during subduction of oceanic FeTi-oxide gabbro. J Petrol 51:2489–2514

    Article  Google Scholar 

  • Hacker BR (2008) H2O subduction beyond arcs. G3. Geochem Geophys Geosyst 9:1–24

    Article  Google Scholar 

  • Harlov DE, Austrheim H (2013) Metasomatism and the chemical transformation of rocks. Springer, Berlin, p 789

    Book  Google Scholar 

  • Hermann J, Rubatto D (2014) Subduction of continental crust to mantle depth: geochemistry of ultrahigh-pressure rocks. In: Rudnick R (ed) The crust, vol 4. Elsevier, Amsterdam, pp 309–340

    Google Scholar 

  • Hermann J, Zheng YF, Rubatto D (2013) Deep fluids in subducted continental crust. Elements 9:281–287

    Article  Google Scholar 

  • Hoefs J (2004) Stable isotope geochemistry. Tokyo, Springer, p 244

    Book  Google Scholar 

  • Ickert RB, Hiess J, Williams IS, Holden P, Ireland TR, Lanc P, Schram N, Foster JJ, Clement SW (2008) Determining high precision, in situ, oxygen isotope ratios with a SHRIMP II: analyses of MPI-DING silicate-glass reference materials and zircon from contrasting granites. Chem Geol 257:114–128

    Article  Google Scholar 

  • Jamtveit B, Austrheim H (2010) Metamorphism: the role of fluids. Elements 6:153–158

    Article  Google Scholar 

  • John T, Gussone N, Podladchikov YY, Bebout GE, Dohmen R, Halama R, Klemd R, Magna T, Seitz HM (2012) Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs. Nat Geosci 5:489–492

    Article  Google Scholar 

  • Lombardo B, Nervo R, Compagnoni R, Messiga B, Kienast JR, Mevel C, Fiora L, Piccardo GB, Lanza R (1978) Osservazioni preliminari sulle ofioliti metamorfiche del Monviso (Alpi Occidentali). Rend Soc Ital Mineral Petrol 34:253–305

    Google Scholar 

  • Ludwig KR (2003) Isoplot/Ex version 3.0. A geochronological toolkit for Microsoft Excel. In: Berkeley Geochronological Centre Special Publication, Berkeley, p 70

  • Manatschal G, Müntener O (2009) A type sequence across an ancient magma-poor ocean–continent transition: the example of the western Alpine Tethys ophiolites. Tectonophysics 473:4–19

    Article  Google Scholar 

  • Martin L, Ballevre M, Boulvais P, Halfpenny A, Vanderhaeghe O, Duchêne S, Deloule E (2011) Garnet re-equilibration by coupled dissolution–reprecipitation: evidence from major element and oxygen isotope zoning of “cloudy” garnet. J Metamorph Geol 29:213–231

    Article  Google Scholar 

  • Martin L, Rubatto D, Crepisson C, Hermann J, Putlitz B, Vitale-Brovarone A (2014) Garnet oxygen analysis by SHRIMP-SI: matrix corrections and application to high pressure metasomatic rocks from Alpine Corsica. Chem Geol 374–375:25–36

    Article  Google Scholar 

  • Masago H, Rumble D, Ernst WG, Parkinson CD, Maruyama S (2003) Low d18O eclogites from the Kokchetav massif, northern Kazakhstan. J Metamorph Geol 21:579–587

    Article  Google Scholar 

  • Miller JA, Cartwright I (2000) Distinguishing between seafloor alteration and fluid flow during subduction using stable isotope geochemistry: examples from Tethyan ophiolites in the Western Alps. J Metamorph Geol 18:467–482

    Article  Google Scholar 

  • Miller JA, Cartwright I, Buick I, Barnicoat A (2001) An O-isotope profile through the HP–LT Corsican ophiolite, France and its implications for fluid flow during subduction. Chem Geol 178:43–69

    Article  Google Scholar 

  • Miller CF, Buick IS, Cartwright I, Barnicoat A (2002) Fluid processes during the exhumation of high-P metamorphic belts. Miner Mag 66:93–119

    Article  Google Scholar 

  • Nadeau S, Philippot P, Pineau F (1993) Fluid inclusion and mineral isotopic compositions (H–O–C) in eclogitic rocks as tracers of local fluid migration during high-pressure metamorphism. Earth Planet Sci Lett 114:431–448

    Article  Google Scholar 

  • Padrón-Navarta JA, Sánchez-Vizcaíno VL, Garrido CJ, Gómez-Pugnaire MT (2011) Metamorphic record of high-pressure dehydration of antigorite serpentinite to chlorite harzburgite in a subduction setting (Cerro del Almirez, Nevado-Filábride complex, Southern Spain). J Petrol 52:2047–2078

    Article  Google Scholar 

  • Page FZ, Kita NT, Valley JW (2010) Ion microprobe analysis of oxygen isotopes in garnets of complex chemistry. Chem Geol 270:9–19

    Article  Google Scholar 

  • Page FZ, Essene EJ, Mukasa SB, Valley JW (2014) A garnet-zircon oxygen isotope record of subduction and exhumation fluids from the Franciscan complex, California. J Petrol 55:103–131

    Article  Google Scholar 

  • Philippot P (1993) Fluid-melt rock interaction in mafic eclogites and coesite-bearing metasediments—constraints on volatile recycling during subduction. Chem Geol 108:93–112

    Article  Google Scholar 

  • Plank T, Langmuir CH (1998) The chemical composition of subducting sediments and its consequences for the crust and mantle. Chem Geol 145:325–394

    Article  Google Scholar 

  • Putlitz B, Matthews A, Valley JW (2000) Oxygen and hydrogen isotope study of high-pressure metagabbros and metabasalts (Cyclades, Greece): implications for the subduction of oceanic crust. Contrib Mineral Petrol 138:114–126

    Article  Google Scholar 

  • Raimondo T, Clark C, Hand M, Cliff J, Harris C (2012) High-resolution geochemical record of fluid-rock interaction in a mid-crustal shear zone: a comparative study of major element and oxygen isotope transport in garnet. J Metamorph Geol 30:255–280

    Article  Google Scholar 

  • Rubatto D, Hermann J (2003) Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): implications for Zr and Hf budget in subduction zones. Geochim Cosmochim Acta 67:2173–2187

    Article  Google Scholar 

  • Russell AK, Kitajima K, Strickland A, Medaris LG Jr, Schulze DJ, Valley JW (2013) Eclogite-facies fluid infiltration: constraints from d18O zoning in garnet. Contrib Mineral Petrol 165:103–116

    Article  Google Scholar 

  • Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163:361–379

    Article  Google Scholar 

  • Selverstone J, Sharp ZD (2013) Chlorine isotope constraints on fluid-rock interactions during subduction and exhumation of the Zermatt-Saas ophiolite. Geochem Geophys Geosyst 14:4370–4391. doi:10.1002/ggge.20269

    Article  Google Scholar 

  • Spandler C, Pettke T, Rubatto D (2011) Internal and external fluid sources for eclogite-facies veins in the Monviso meta-ophiolite, Western Alps: implications for fluid flow in subduction zones. J Petrol 52:1207–1236

    Article  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science 268:858–861

    Article  Google Scholar 

  • Valley JW (2003) Oxygen isotopes in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon, vol 53. Mineralogical Society of America, Washington, pp 343–385

    Google Scholar 

  • Valley JW, Kitchen N, Kohn MJ, Niendorf CR, Spicuzza MJ (1995) UWG-2, a garnet standard for oxygen isotope ratios: strategies for high precision and accuracy with laser heating. Geochim Cosmochim Acta 59:5223–5231

    Article  Google Scholar 

  • Valley JW, Kinny PD, Schulze DJ, Spicuzza MJ (1998) Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contrib Mineral, Petrol

    Google Scholar 

  • Valley JW, Bindeman IN, Peck WH (2003) Empirical calibration of oxygen isotope fractionation in zircon. Geochim Cosmochim Acta 67:3257–3266

    Article  Google Scholar 

  • Vielzeuf D, Veschambre M, Brunet F (2005) Oxygen isotope heterogeneities and diffusion profile in composite metamorphic–magmatic garnets from the Pyrenees. Am Mineral 90:463–472

    Article  Google Scholar 

  • Wenner DB (1979) Hydrogen, oxygen and carbon isotopic evidence for the origin of rodingites in serpentinized ultramafic rocks. Geochim Cosmochim Acta 43:603–614

    Article  Google Scholar 

  • Wenner DB, Taylor HP (1971) Temperatures of serpentinization of ultramafic rocks based on 018/016 fractionation between coexisting serpentine and magnetite. Contrib Mineral Petrol 32:165–185

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Article  Google Scholar 

  • Williams IS (1998) U-Th-Pb geochronology by ion microprobe. In: McKibben MA, Shanks WC III, Ridley WI (eds) Application of microanalytical techniques to understanding mineralizing processes, vol 7. Reviews in economic geology. Society of Economic Geologists, Littleton, pp 1–35

    Google Scholar 

  • Yardley BWD (2009) The role of water in the evolution of the continental crust. J Geol Soc 166:585–600

    Article  Google Scholar 

  • Zheng YF (1991) Calculation of oxygen isotope fractionation in metal oxides. Geochim Cosmochim Acta 55:2299–2307

    Article  Google Scholar 

  • Zheng YF (1993a) Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth Planet Sci Let. 120:247–263

    Article  Google Scholar 

  • Zheng YF (1993b) Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim Cosmochim Acta 57:1079–1091

    Article  Google Scholar 

Download references

Acknowledgments

This study benefited from constructive discussion with Joerg Hermann. D Rubatto acknowledges the financial support of the Australia Research Council, DP110101599.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Rubatto.

Additional information

Communicated by Steven Reddy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource Table 1

SHRIMP U–Pb analyses of zircon from eclogite LSZ44 (XLSX 51 kb)

Online Resource Table 2

SHRIMP analyses of oxygen isotopes in zircon (XLSX 61 kb)

Online Resource Table 3

SHRIMP analyses of oxygen isotopes in garnet from samples MVE5 and MVV4 (XLSX 55 kb)

Online Resource Table 4

SHRIMP analyses of oxygen isotopes in garnet from sample ISZ17 (XLSX 60 kb)

Online Resource Table 5

SHRIMP analyses of oxygen isotopes in garnet from sample LSZ23 (XLSX 74 kb)

Online Resource Fig. 1

Details of location of oxygen analyses in MVV4 and MVE garnet (PDF 6183 kb)

Online Resource Fig. 2

Details of location of oxygen analyses in ISZ17 garnet (PDF 10028 kb)

Online Resource Fig. 3

Details of location of oxygen analyses in LSZ23 garnet (PDF 10413 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubatto, D., Angiboust, S. Oxygen isotope record of oceanic and high-pressure metasomatism: a P–T–time–fluid path for the Monviso eclogites (Italy). Contrib Mineral Petrol 170, 44 (2015). https://doi.org/10.1007/s00410-015-1198-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1198-4

Keywords

Navigation