Log in

Recycled oceanic crust in the Hawaiian Plume: evidence from temporal geochemical variations within the Koolau Shield

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The subaerial surface of Koolau volcano is composed of lavas that define the distinctive endmember composition for Hawaiian shield lavas, known as the Koolau component, now designated as the Makapuu-stage. The geochemical characteristics of lavas recovered by the Koolau Scientific Drilling Project (KSDP) show that this distinctive composition forms a <300-m thick veneer. Below this veneer, from ~300m to 470 m below sea level, Koolau shield lavas transition to a composition similar to Mauna Loa lavas, now designated as the Kalihi-stage. This transition was gradual, occurring over >80 ka; therefore it was not caused by an abrupt event, such as a landslide. Among all Koolau shield lavas, there are correlations between radiogenic isotopic ratios of Sr, Nd and Pb and compositional characteristics, such as SiO2 content (adjusted to be in equilibrium with Fo90 olivine), Sr/Nb, La/Nb and Th/La. These long-term compositional and isotopic trends show that as the shield aged, there was an increasing role for an ancient recycled marine sediment component (<3% of the source) accompanied by up to 20% SiO2-rich dacitic melt. This melt was generated by partial melting of garnet pyroxenite, probably kilometers in size, that formed from recycled basaltic oceanic crust. In detail, time series analyses of depth profiles of Al2O3/CaO, Sr/Nb, La/Nb and Th/La in the KSDP drill core show correlations among these ratios indicating that recycled oceanic crust contributed episodically, ~29 ka period, to the magma source during the prolonged transition from Kalihi- to Makapuu-stage lava compositions. The long-term geochemical trends show that recycled oceanic crust was increasingly important as the Koolau shield moved away from the plume and encountered lower temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Beattie P, Ford C, Russell D (1991), Partition coefficients for olivine-melt and orthopyroxene-melt system. Contrib Mineral Petrol 109(2):212–224

    CAS  Google Scholar 

  • Ben Othman D, White WM, Patchett J (1989), The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth Planet Sci Letts 94(1–2):1–21

    CAS  Google Scholar 

  • Blichert-Toft J, Frey FA, Albarede F (1999), Hf isotope evidence for pelagic sediments in the source of Hawaiian basalts. Science 285(5429):879–882

    CAS  PubMed  Google Scholar 

  • Blichert-Toft J, Weis D, Maerschalk C, Agranier A, Albarède F (2003), Hawaiian hot spot dynamics as inferred from the Hf and Pb isotope evolution of Mauna Kea volcano. Geochem Geophys Geosyst 4(2):8704 doi:10.1029/2002GC000340

    Google Scholar 

  • Blundy JD, Robinson JAC, Wood BJ (1998), Heavy REE are compatible in clinopyroxene on the spinel lherzolite solidus. Earth Planet Sci Lett 160:493–504

    CAS  Google Scholar 

  • Budahn JR, Schmitt RA (1985), Petrogenetic modeling of Hawaiian tholeiitic basalts; a geochemical approach. Geochim Cosmochim Acta 49(1):67–87

    CAS  Google Scholar 

  • Chen C-Y, Frey FA, Rhodes JM, Easton RM (1996), Temporal geochemical evolution of Kilauea Volcano: comparison of Hilina and Puna Basalt. In: Basu A, Hart SR (eds) Earth processes: reading the isotopic code. Geophysical Monograph Series, vol 95. AGU, Washington, pp 161–181

    Google Scholar 

  • Cohen AS, O’Nions RK, Kurz MD (1996), Chemical and isotopic variations in Mauna Loa tholeiites. Earth Planet Sci Lett 143:111–124

    CAS  Google Scholar 

  • DePaolo DJ, Stolper EM (1996), Models of Hawaiian volcano growth and plume structure; implications of results from the Hawaii Scientific Drilling Project. J Geophys Res 101(5):11,643–11,654

    Google Scholar 

  • DePaolo D, Bryce J, Dodson A, Shuster D, Kennedy B (2001), Isotopic evolution of Mauna Loa and the chemical structure of the Hawaiian plume. Geochem Geophys Geosyst, 2; doi:10.1029/2000GC000139

  • Eggins SM (1992), Petrogenesis of Hawaiian tholeiites; 1, Phase equilibria constraints. Contrib Mineral Petrol 110(2–3):387–397

    CAS  Google Scholar 

  • Eisele J, Abouchami W, Galer SJG, Hofmann AW (2003), The 320 kyr Pb isotope evolution of Mauna Kea lavas recorded in the HSDP-2 drill core. Geochem Geophys Geosyst 4(5):8710, doi:10.1029/2002GC000339

    Google Scholar 

  • Fodor RV, Frey FA, Bauer GR, Clague DA (1992), Ages, rare-earth element enrichment, and petrogenesis of tholeiitic and alkalic basalts from Kahoolawe Island, Hawaii. Contrib Mineral Petrol 110:442–462

    CAS  Google Scholar 

  • Frey FA, Clague DA (1983), Geochemistry of diverse basalt types from Loihi Seamount, Hawaii; petrogenetic implications. Earth Planet Sci Letts 66:337–355

    CAS  Google Scholar 

  • Frey FA, Rhodes JM (1993), Inter-shield geochemical differences among Hawaiian volcanoes: implications for source compositions, melting processes and magma ascent paths. Philos. Trans R Soc Lond A 342:121–136

    CAS  Google Scholar 

  • Frey FA, Garcia MO, Roden MF (1994), Geochemical characteristics of Koolau Volcano: Implications of intershield geochemical differences among Hawaiian volcanoes. Geochim Cosmochim Acta 58:1441–1462

    CAS  Google Scholar 

  • Galer SJG, O’Nions RK (1985), Residence time of thorium, uranium and lead in the mantle with implications for mantle convection. Nature 316(6031):778–782

    CAS  Google Scholar 

  • Garcia MO, Jorgenson BA, Mahoney JJ, Ito E, Irving AJ (1993), An evaluation of temporal geochemical evolution of Loihii summit lavas: Results from Alvin submersible dives J Geophys Res 98:535–550

    Google Scholar 

  • Garcia MO, Foss DJP, West HB, Mahoney JJ (1995b), Geochemical and isotopic evolution of Loihi Volcano, Hawaii. J Petrol 36:1647–1644

    CAS  Google Scholar 

  • Garcia MO, Hulsebosch TP, Rhodes JM (1995a), Olivine-rich submarine basalts from the southwest rift zone of Mauna Loa Volcano; implications for magmatic processes and geochemical evolution. In: Rhodes JM, Lockwood JP (eds) Mauna Loa Revealed, Geophys Monogr Ser 92:219–239

  • Garcia MO, Rubin KH, Norman MD, Rhodes JM, Graham DW, Muenow DW, Spencer K (1998), Petrology and geochronology of basalt breccia from the 1996 earthquake swarm of Loihi Seamount, Hawaii; magmatic history of its 1996 eruption. Bull Volcan 59:577–592

    Article  Google Scholar 

  • Garcia MO, Pietruszka AJ, Rhodes JM, Swanson K (2000), Magmatic processes during the prolonged Pu’u O’o eruption of Kilauea volcano, Hawaii. J Petrol 41(7):967–990

    CAS  Google Scholar 

  • Garcia MO (2002), Giant landslides in the northeast of O’ahu; when, why and how?. In: Takahashi E, Lipman PW, Garcia MO, Naka J, Aramaki S (eds) Hawaiian volcanoes; deep underwater perspectives, Geophys Monogr Ser 128. pp 221–222

  • Hart SR, Dunn T (1993), Experimental cpx/melt partitioning of 24 trace elements. Contrib Mineral Petrol 113(1):1–8

    CAS  Google Scholar 

  • Haskins ER, Garcia MO (2004), Scientific drilling reveals geochemical heterogeneity within the Ko’olau shield, Hawai’i. Contrib Mineral Petrol 147:162–188

    CAS  Google Scholar 

  • Hauri EH, Wagner TP, Grove TL (1994a), Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chem Geol 117(1–4):149–166

    CAS  Google Scholar 

  • Hauri EH, Whitehead JA, Hart SR (1994b), Fluid dynamic and geochemical aspects of entrainment in mantle plumes. J Geophys Res 99(12):24,275–24,300

    Google Scholar 

  • Hauri EH (1996) Major-element variability in the Hawaiian mantle plume. Nature 382:415–419

    CAS  Google Scholar 

  • Hirschmann MM, Stolper EM (1996) A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib Mineral Petrol 124(2):185–208

    CAS  Google Scholar 

  • Hofmann AW, Feigenson MD, Raczek I (1984) Case studies on the origin of basalt; III, Petrogenesis of the Mauna Ulu eruption, Kilauea, 1969–1971. Contrib Mineral Petrol 88(1–2):24–35

    CAS  Google Scholar 

  • Hofmann AW (1988), Chemical differentiation of the earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314

    Article  CAS  Google Scholar 

  • Hofmann AW (1997), Mantle geochemistry; the message from oceanic volcanism. Nature 385(6613):219–229

    Article  CAS  Google Scholar 

  • Honnorez J, Mevel C, Honnerez-Guerstein BM and Tomschi HP (1990), Mineralogy and chemistry of sulfide deposits drilled from hydrothermal mound of the snake pit active field, MAR. In: Detrick, R, Honnorez J, Bryan WB, Juteau, T, et al (eds), Proceedings of the Ocean Drilling Program, Scientific Results, Vol 106/109: U.S. Government Printing Office, pp 145–162, Washington

  • Huang S, Frey FA (2003), Trace element abundances of Mauna Kea basalt from Phase 2 of the Hawaiian Scientific Drilling Project: petrogenetic implications of correlations with major element content and isotopic ratios. Geochem Geophys, Geosys 4(6):8711, doi, 1029/2002 GC000322

    Google Scholar 

  • Jackson MC, Wilmoth RA, and Frey FA (1999), Geology and petrology of basaltic lavas and dikes of the Koolau Volcano in the Trans-Koolau exploratory tunnels, Oahu, Hawaii. Bull Volcan 60:381–401

    Article  Google Scholar 

  • Kelemen PB (1986), Assimilation of ultramafic rock in subduction-related magmatic arcs. J Geol 94(6):829–843

    CAS  Google Scholar 

  • Kogiso T, Hirschmann MM, Reiners PW (2004), Length scales of mantle heterogeneities and their relationship to ocean island basalt geochemistry, Geochim Cosmochim Acta 68(2):345–360, doi, 10.1016/S0016-7037(03)00419-8

    Google Scholar 

  • Kurz MD, Kenna TC, Kammer DP, Rhodes JM, Garcia MO (1995), Isotopic evolution of Mauna Loa volcano: a view from the submarine southwest rift Mauna Loa: A Decade Volcano. In: Rhodes JM, Lockwood JP (eds) Mauna Loa Revealed. Geophys Monogr Ser 92; 289–306

  • Lassiter JC, Hauri EH (1998), Osmium-iosotope variations in Hawaiian lavas: Evidence for recycled oceanic lithosphere in the Hawaiian plume. Earth Planet Sci Letts 164:483–496

    CAS  Google Scholar 

  • Leeman WP, Gerlach DC, Garcia MO, West HB (1994). Geochemical variations in lavas from Kahoolawe volcano, Hawaii: evidence for open system evolution of plume-derived magmas. Contrib Mineral Petrol 116:62–77

    CAS  Google Scholar 

  • Li X, Kind R, Yuan X, Wölbern I, Hanka W (2004), Rejuvenation of the lithosphere by the Hawaiian plume. Nature 427:827–829 doi:10.1038/nature02349

    Google Scholar 

  • Norman MD, Garcia MO (1999), Primitive magmas and source characteristics of the Hawaiian Plume; petrology and geochemistry of shield picrites. Earth Planet Sci Letts 168:27–44

    CAS  Google Scholar 

  • Norman MD, Garcia MO and Bennett VC (2004), Rhenium and chalcophile elements in basaltic glasses from Ko’olau and Moloka’i volcanoes: Magmatic outgassing and composition of the Hawaiian plume. Geochim Cosmochim Acta 68(18):3761–3777, doi: 10.1016/j.gca.2004.02.025

    Google Scholar 

  • Patino LC, Carr MJ, Feigenson MD (2000), Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contrib Mineral Petrol 138(3):265–283

    CAS  Google Scholar 

  • Pertermann M, Hirschmann MM (2003a), Anhydrous partial melting experiments on MORB-like eclogite: Phase reactions, phase compositions and mineral-melt partitioning of major elements at 2–3 GPa. J Petrol 44(12):2173–2201

    CAS  Google Scholar 

  • Pertermann M and Hirschmann MM (2003b), Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa; constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. J Geophys Res 108(B2):2125, doi: 10.1029/2000JB000118

    Google Scholar 

  • Pertermann M, Hirschmann MM, Hametner K, Gunther D, Schmidt MW (2004), Experimental determination of trace element partitioning between garnet and silica-rich liquid during anhydrous partial melting of MORB-like eclogite. Geochem Geophys, Geosyst, 5, Q05A01, doi:10.1029/2003GC000638

  • Pietruszka AJ, Garcia MO (1999), A rapid fluctuation in the mantle source and melting history of Kilauea Volcano inferred from the geochemistry of its historical summit lavas (1790–1982): J Petrol 40(8):1321–1342

    CAS  Google Scholar 

  • Plank T, Langmuir CH (1998), The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145(3–4):325–394

    Article  CAS  Google Scholar 

  • Plank T (2005), Constraints from Thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents. J Petrol doi:10.1093/petrology/egi005

    Google Scholar 

  • Plank T, Balzer V, Carr M (2002), Nicaraguan volcanoes record paleoceanographic changes accompanying closure of the Panama gateway. Geology 30(12):1087–1090

    Article  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992), Numerical Recipes in C, 2nd edn. Cambridge University Press, New York, pp 994

    Google Scholar 

  • Putirka K (1999), Melting depths and mantle heterogeneity beneath Hawaii and the East Pacific Rise; constraints from Na/Ti and rare earth element ratios. J Geophys Res 104(2):2817–2829

    Google Scholar 

  • Quane SL, Garcia MO, Guillou H, Hulsebosch TP (2000), Magmatic history of the East Rift Zone of Kilauea Volcano, Hawaii based on drill core from SOH 1. J Volcanol Geotherm Res 102(3–4):319–338

    CAS  Google Scholar 

  • Ray JS, Martin MW, Veizer J, Bowring SA (2002), U-Pb zircon dating and Sr isotope systematics of the Vindhyan Supergroup, India. Geology 30(2):131–134

    Google Scholar 

  • Reiners PW (2002), Temporal-compositional trends in intraplate basalt eruptions: Implications for mantle heterogeneity and melting processes, Geochem Geophys Geosyst 3(2) 10.1029/2001GC000250

  • Rhodes JM, Hart SR (1995), Episodic trace element and isotopic variation in historical Mauna Loa lavas. In: Rhodes JM, Lockwood JP (eds) Mauna Loa Revealed, Geophys Monogr Ser 92. 263–288

  • Rhodes JM (1996), Geochemical stratigraphy of lava flows sampled by the Hawaii Scientific Drilling Project. J Geophys Res 101:11,729–11,746

    Google Scholar 

  • Rhodes JM, Vollinger MJ (2004), Composition of basaltic lavas sampled by phase-2 of the Hawaii Scientific Drilling Project: Geochemical stratigraphy and magma types. Geochem Geophys Geosyst, 5, Q03G13, doi:10.1029/2002GC000434

  • Ribe NM, Christensen UR (1999), The dynamical origin of Hawaiian volcanism. Earth Planet Sci Lett 171(4):517–531

    CAS  Google Scholar 

  • Roden MF, Trull T, Hart SR, Frey FA (1994), New He, Sr, Nd and Pb isotopic constraints on the constitution of the Hawaiian plume: results from Koolau Volcano, Oahu, Hawaii. Geochim Cosmochim Acta 58:1431–1440

    CAS  Google Scholar 

  • Salters VJM (1996), The generation of mid-ocean ridge basalts from the Hf and Nd isotope perspective. Earth Planet Sci Letts 141:109–123

    CAS  Google Scholar 

  • Salters VJM, Longhi J (1999), Trace element partitioning during the initial stages of melting beneath mid-ocean ridges. Earth Planet Sci Letts 166:15–30

    CAS  Google Scholar 

  • Seitz H-M, Altherr R, Ludwig T (1999), Partitioning of transition elements between orthopyroxene and clinopyroxene in peridotitic and websteritic xenoliths; new empirical geothermometers. Geochim Cosmochim Acta 63(23–24):3967–3982

    CAS  Google Scholar 

  • Sharp WD, Renne PR (2005), 40 Ar/39 Ar dating of core recovered by the Hawaii Scientific Drilling Project (Phase 2) Hilo, Hawaii, Geochem Geophys Geosyst, 6,Q04G17, doi:10.1029/2004GC000846

  • Shinozaki K, Ren Z-Y, Takahashi E (2002), Geochemical and petrological characteristics of Nuuanu and Wailau landslide blocks. In: Takahashi E, Lipman PW, Garcia MO, Naka J, Aramaki S (eds) Hawaiian volcanoes; deep underwater perspectives, Geophys Monogr Ser 128: 297–310

  • Sobolev AV, Hofmann AW, Nikogosian IK (2000), Recycled oceanic crust observed in ghost plagioclase within the source of Mauna Loa lavas. Nature 404:986–990

    CAS  PubMed  Google Scholar 

  • Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK (2005), An olivine-free mantle source of Hawaiian shield basalts. Nature 434:590–597, doi: 10.1038/nature03411

    CAS  PubMed  Google Scholar 

  • Stolper E, Sherman S, Garcia M, Baker M, Seaman C (2004), Glass in the submarine section of the HSDP2 drill core, Hilo, Hawaii. Geochem Geophys Geosys, 5, Q07G15, doi:10.1029/2003GC000553

  • Takahashi E, Nakajima K, Wright TL (1998), Origin of the Columbia River basalts; melting model of a heterogeneous plume head. Earth Planet Sci Letts 162:63–80

    Article  Google Scholar 

  • Takahashi E, Nakajima K (2002), Melting process in the Hawaiian Plume; an experimental study. In: Takahashi E, Lipman PW, Garcia MO, Naka J, Aramaki S (eds) Hawaiian volcanoes; deep underwater perspectives Geophys Monogr Ser 128:403–418

  • Tanaka R, Nakamura E, Takahashi E (2002), Geochemical evolution of Koolau Volcano, Hawaii. In: Takahashi E, Lipman PW, Garcia MO, Naka J, Aramaki S (eds) Hawaiian volcanoes; deep underwater perspectives. Geophys Monogr Ser 128:311–332

    Google Scholar 

  • Thompson G, Humphris SE, Schroeder B, Sulanowska M, Rona PA (1988), Active vents and massive sulfides at 26°N (TAG) and 23°N (Snakepit) on the mid-Atlantic ridge. Can Mineral 26:697–711

    CAS  Google Scholar 

  • Tu G, Zhao Z, Qiu Y (1985), Evolution of Precambrian REE mineralization. Precamb Res 27:131–151

    CAS  Google Scholar 

  • van Westrenen W, Blundy J, Wood B (1999), Crystal-chemical controls on trace element partitioning between garnet and anhydrous silicate melt. Am Mineral 84:838–847

    Google Scholar 

  • van Westrenen W, Blundy JD, Wood BJ (2001), High field strength element/rare earth element fractionation during partial melting in the presence of garnet; implications for identification of mantle heterogeneities, Geochem Geophys, Geosys 2(7):doi:10.1029/2000GC000133

  • Wagner TP, Grove TL (1998), Melt/harzburgite reaction in the petrogenesis of tholeiitic magma from Kilauea Volcano, Hawaii. Contrib Mineral Petrol 131(1):1–12

    Article  CAS  Google Scholar 

  • Walter MJ (1998), Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39(1):29–60

    Article  CAS  Google Scholar 

  • Yaxley GM, Green DH (1998) Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust, Schweiz. Mineral Petrogr Mitt 78:243–255

    CAS  Google Scholar 

  • Yogodzinski GM, Kay RW, Volynets ON, Koloskov AV, Kay SM (1995), Magnesian andesite in the western Aleutian Komandorsky region; implications for slab melting and processes in the mantle wedge. Geol Soc Am Bull 107(5):505–519

    CAS  Google Scholar 

  • Zhong S, Watts AB (2002), Constraints on the dynamics of mantle plumes from uplift of the Hawaiian Islands. Earth Planet Sci Letts 203:105–116

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by NSF Grant EAR-0105557. Expenses associated with coring were partially supported by funds from the University of Hawaii, California Institute of Technology, University of California at Berkeley, Massachusetts Institute of Technology, Carnegie Institute of Washington, Max-Plank Institut für Chemie, Woods Hole Oceanographic Institute and Tokyo Institute of Technology. We especially thank M. O. Garcia (University of Hawaii) for his origination and leadership of the KSDP. We thank V. J. M. Salters and Z. Fekiacova for sharing their Nd, Hd and Pb isotopic data for the KSDP samples that we studied, B. Grant, R. Kayser and S. Higgins for their assistance in ICP-MS analysis, and F. Dudas for help in the clean lab. We also appreciate the constructive review comments of Terry Plank and an anonymous reviewer, as well as helpful comments from S. W. Parman, V. J. M. Salters, S. A. Bowring and J. P. Grotzinger. We thank Tim Grove for editorial handling. We thank A. V. Sobolev for providing his in press Nature paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shichun Huang.

Additional information

Communicated by T.L. Grove

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, S., Frey, F.A. Recycled oceanic crust in the Hawaiian Plume: evidence from temporal geochemical variations within the Koolau Shield. Contrib Mineral Petrol 149, 556–575 (2005). https://doi.org/10.1007/s00410-005-0664-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-005-0664-9

Keywords

Navigation