Log in

Ferric/ferrous ratios in 1984 Mauna Loa lavas: a contribution to understanding the oxidation state of Hawaiian magmas

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Ferric/ferrous ratios have been used to estimate the oxygen fugacity of lavas erupted in 1984 on Mauna Loa Volcano, Hawaii. Rapidly quenched lavas erupted close to vents are less oxidized than rapidly quenched lavas scooped from lava flows several kilometers away from the vents. These results demonstrate that sampling is of critical importance in determining the oxidation state of lava. The oxidation state of the vent lavas, below or at magnetite–wüstite (MW), is significantly lower than that previously reported for Hawaiian lavas (~FMQ). Similarly, rapidly quenched lavas from the ongoing Kilauea eruption and Loihi seamount, all have oxygen fugacities that are close to MW and on the low side of the range previously reported for Hawaiian lavas. From this we conclude that the initial oxygen fugacity of parental Hawaiian magmas is close to MW, not FMQ, and that previous estimates of the oxidation state of Hawaiian lavas may have been too high. This implies that the plume source of these magmas is also at or below MW, but not as reduced as the mantle source of mid-ocean ridge basalts. Additionally, Mauna Loa lavas appear to be slightly more reduced than Kilauea or Loihi lavas, perhaps indicating heterogeneous oxidation within the Hawaiian plume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson AT, Wright TL (1972) Phenocrysts and glass inclusions and their bearing on oxidation and mixing of basaltic magmas Kilauea volcano, Hawaii. Am Miner 57:188–216

    CAS  Google Scholar 

  • Arculus RJ (1985) Oxidation status of the mantle: past and present. Ann Rev Earth Planet Sci 13:75–95

    Article  CAS  Google Scholar 

  • Ballhaus C (1993) Redox states of lithospheric and asthenospheric upper mantle. Contrib Miner Petrol 114:331–348

    Article  CAS  Google Scholar 

  • Ballhaus C (1995) Is the upper mantle metal-saturated?. Earth Planet Sci Lett 132:75–86

    Article  CAS  Google Scholar 

  • Ballhaus C, Frost BR (1994) The generation of oxidized CO2-bearing basaltic melts from reduced CH4-bearing upper mantle sources. Geochim Cosmochim Acta 58:4931–4940

    Article  CAS  Google Scholar 

  • Basaltic Volcanism Study Project (1981) Temperature and gas fugacities of planetary basalts. Pergamon Press Inc., New York, 371–384

  • Buddington AF, Lindsley DH (1964) Iron titanium oxide minerals and synthetic equivalents. J Petrol 5:310–357

    CAS  Google Scholar 

  • Byers CD, Garcia MO, Muenow DW (1985) Volatiles in pillow rim glasses from Loihi and Kilauea volcanoes Hawaii. Geochim Cosmochim Acta 49:1187–1196

    Article  Google Scholar 

  • Carmichael ISE (1991) The redox states of basic and silicic magmas: a reflection of their source regions? Contrib Miner Petrol 106:129–141

    Article  CAS  Google Scholar 

  • Carmichael ISE, Ghiorso MS (1986) Oxidation-reduction in basic magmas: a case for homogeneous equilibria. Earth Planet Sci Lett 78:200–210

    Article  CAS  Google Scholar 

  • Christie DM, Carmichael ISE, Langmuir CH (1986) Oxidation states of mid-ocean ridge basalt glasses. Earth Planet Sci Lett 79:397–411

    Article  CAS  Google Scholar 

  • Frey FA, Rhodes JM (1993) Intershield geochemical differences among Hawaiian volcanoes: implications for source compositions, melting processes and magma ascent paths. Roy Soc Lond Phil Trans A342:121–136

    CAS  Google Scholar 

  • Frey FA, Roden MF (1987) The mantle source for the Hawaiian islands; constraints from the lavas and ultramafic inclusions. In: Menzies MA, Hawksworth CJ (ed) Mantle metasomatism. Academic, New York, pp 423–467

    Google Scholar 

  • Fudali RF (1965) Oxygen fugacities of basaltic and andesitic magmas. Geochim Cosmochim Acta 29:1063–1075

    Article  CAS  Google Scholar 

  • Gerlach TM (1980) Evaluation of of volcanic gas analyses from Kilauea volcano. J Volcanol Geotherm Res 7:295–317

    Article  CAS  Google Scholar 

  • Gerlach TM (1993) Oxygen buffering of Kilauea volcanic gases and the oxygen fugacity of Kilauea basalts. Geochim Cosmochm Acta 57:795–814

    Article  CAS  Google Scholar 

  • Gerlach TM (2004) Comment on paper: Morphology and composition of spinel in Puu Oo lava (1996–1998), Kilauea volcano, Hawaii—enigmatic discrepancies between lava and gas-based fO2 determinations of Puu Oo lava. J Volcanol Geotherm Res 135:241–244

    Article  Google Scholar 

  • Haggerty SE (1990) Redox state of the continental lithosphere. In: Menzies MA (ed) Continental Mantle. Clarendon Press, Oxford, pp 87–109

    Google Scholar 

  • Hauri EH, Whitehead JA, Hart SR (1994) Fluid dynamic and geochemical aspects of entrainment in mantle plumes. J Geophys Res 99:24275–24300

    Article  CAS  Google Scholar 

  • Helz RT, Thornber CR (1987) Geothermometry of Kilauea Iki lava lake, Hawaii. Bull Volcanol 49:651–668

    Article  CAS  Google Scholar 

  • Kilinc I, Carmichael ISE, Rivers ML, Sack RO (1983) The ferrous–ferric ratio of natural silicate liquids equilibrated in air. Contrib Miner Petrol 83:136–140

    Article  CAS  Google Scholar 

  • Kress VC, Carmichael ISE (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Miner Petrol 108:82–92

    CAS  Google Scholar 

  • Kurz MD, Kenna TC, Kammer DP, Rhodes JM, Garcia MO (1995) Isotopic evolution of Mauna Loa volcano: a view from the submarine SW rift, in Mauna Loa revealed: structure, composition, history, hazards, Geophys Monogr Ser, vol 92. In: Rhodes JM , Lockwood JP (eds) AGU, Washington DC, pp 289–306

  • Lassiter JC, Hauri EH (1998) Osmium isotope variations in Hawaiian lavas: evidence for recycled lithosphere in the Hawaiian plume. Earth Planet Sci Lett 164:483–496

    Google Scholar 

  • Lipman PW, Banks NG, Rhodes JM (1985) Degassing induced crystallization of basaltic magma and effects on lava rheology. Nature 317:604–607

    Article  CAS  Google Scholar 

  • Lockwood JP, Dvorak JJ, English TT, Koyanagi RY, Okamura AT, Summers ML, Tanigawa WR (1987) Mauna Loa 1974–1984: a decade of intrusive and extrusive activity. US Geol Surv Prof Pap 1350:537–570

    Google Scholar 

  • Maxwell JA (1968) Rock and mineral analysis. Interscience Publishers, New York, pp 419–421

    Google Scholar 

  • Montierth C, Johnston AD, Cashman KV (1995) An empirical glass-composition-based geothermometer for Mauna Loa lavas, in Mauna Loa revealed: structure, composition, history and hazards, Geophys Monogr Ser, vol 92. In: Rhodes JM, Lockwood JP (eds) AGU, Washington, DC, pp 207–217

  • Moore JG, Ault WU (1965) Historic littoral cones in Hawaii. Pacific Sci 19:3–11

    Google Scholar 

  • Morse SA, Rhodes JM, Nolan K (1991) Redox effect on the partitioning of nickel in olivine. Geochim Cosmochim Acta 55:2373–2378

    Article  CAS  Google Scholar 

  • Neal CA, Duggan TJ, Wolfe EW, Brandt EL (1988) Lava samples, temperatures and compositions. US Geol Surv Prof Paper 1463:99–126

    Google Scholar 

  • O’Neil H, St C, Wall VJ (1987) The olivine-orthopyroxene-spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the earth’s upper mantle. J Petrol 28:1169–1191

    CAS  Google Scholar 

  • Peck DL, Wright TL (1966) Experimental studies of molten basalts in situ: a summary of physical and chemical measurements on recent lava lakes of Kilauea volcano, Hawaii. Geol Soc Am Ann Meeting 101:158

    Google Scholar 

  • Potts PJ, Tindle AG, Webb PC (1992) Geochemical Reference Material Compositions. CRC Press, Boca Raton

    Google Scholar 

  • Poustovetov A, Roeder P (2001) The distribution of Cr between basaltic melt and chromian spinel as an oxygen geobarometer. Can Miner 39:309–317

    CAS  Google Scholar 

  • Powers HA (1955) Composition and origin of basaltic magmas on the Hawaiian islands. Geochim Cosmochim Acta 7:77–107

    Article  CAS  Google Scholar 

  • Rhodes JM (1988) Geochemistry of the 1984 Mauna Loa eruption: implications for magma storage and supply. J Geophys Res 93: 4453–4466

    CAS  Google Scholar 

  • Rhodes JM (1995) The 1852 and 1868 Mauna Loa picrite eruptions: clues to parental magma compositions and the magmatic plumbing system, in Mauna Loa revealed: structure, composition, history and hazards, Geophys Monogr Ser, vol 92. In: Rhodes JM, Lockwood JP (eds) AGU, Washington, DC, pp 241–262

  • Rhodes JM (1996) Geochemical stratigraphy of lava flows sampled by the Hawaii scientific drilling project. Geophys Res 101:11,729–11,746

    Article  Google Scholar 

  • Rhodes JM, Wenz KP, Neal CA, Sparks JW, Lockwood JP (1989) Geochemical evidence for invasion of Kilauea’s plumbing system by Mauna Loa magma. Nature 337:257–260

    Article  CAS  Google Scholar 

  • Rhodes JM, Vollinger MJ (2004) Composition of basaltic lavas sampled by phase-2 of the Hawaii scientific drilling project: geochemical stratigraphy and magma types. Geochemistry, Geophysics, Geosystems 5:10.1029/2002GC000434

  • Roeder PL, Thornber, C, Poustovetov, A, Grant, A (2003) Morphology and composition of spinel in Puu Oo lava (1996–1998), Kilauea volcano, Hawaii. J Volc Geotherm Res 123:245–265

    Article  CAS  Google Scholar 

  • Roeder PL, Thornber C, Poustovetov A, Grant A (2004) Reply to comment on paper: ‘morphology and composition of spinel in Puu Oo lava (1996–1998), Kilauea volcano, Hawaii’—enigmatic discrepancies between lava and gas-based fO2 determinations of Puu Oo lava. J Volc Geotherm Res 134:245–248

    Article  CAS  Google Scholar 

  • Sack RO, Carmichael ISE, Rivers M, Ghiorso MS (1980) Ferric–ferrous equilibria in natural silicate liquids at 1 bar. Contrib Miner Petrol 75:369–376

    Article  Google Scholar 

  • Sato, M, Wright TL (1966) Oxygen fugacities measured directly in volcanic gases. Science 153:1103–1105

    CAS  Google Scholar 

  • Spencer KJ, Lindsley DH (1981) A solution model for coexisting iron-titanium oxides. Am Miner 68:586–594

    Google Scholar 

  • Staudigel H, Zindler A, Hart SR, Leslie T, Chen C-Y, Clague D (1984) The isotopic systematics of a juvenile intraplate volcano: Pb, Sr and Nd isotope ratios from Loihi seamount, Hawaii. Earth Planet Sci Lett 69:13–29

    Article  CAS  Google Scholar 

  • Taylor JR (1982) Introduction to error analysis. Oxford University Press, New York, pp 56–59

    Google Scholar 

  • Wallace PJ, Carmichael ISE (1992) Sulfur in basaltic magmas. Geochim Cosmochim Acta 56:1863–1874

    Article  CAS  Google Scholar 

  • Washington HS (1923) Petrology of the Hawaiian Islands, IV the formation of aa and pahoehoe. Am J Sci 6:409–423

    CAS  Google Scholar 

  • Wilson AD (1955) A new method for the determination of ferrous iron in rocks and minerals. Bull Geol Surv Gr Brit 9:56–58

    Google Scholar 

  • Wilson AD (1960) The micro-determination of ferrous iron in silicate minerals by a volumetric and a colorimetic method. Analyst 85:823–827

    Article  CAS  Google Scholar 

  • Wood BJ, Bryndzia LT, Johnson KE (1990) Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science 248:337–345

    CAS  Google Scholar 

  • Wright TL (1971) Chemistry of Kilauea and Mauna Loa lavas in space and time. US Geol Surv Prof Pap 735:1–49

    Google Scholar 

  • Wright TL, Weiblen PA (1968) Mineral composition and paragenesis in tholeiitic basalt from Makaopuhi lava lake, Hawaii. GSA Spec Pap 115:242–243

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dave Christie, Chris Ballhaus, Claudia Rhodes and Carl Thornber for helpful reviews and comments. The efforts of Pete Dawson in support of the XRF facility is, as always, very much appreciated. Thanks to Frank Trusdell and Anja Müller for help with the map of the 1984 flow. This work was supported by NSF grant EAR-9614754.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Rhodes.

Additional information

Communicated by T. L. Grove

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rhodes, J.M., Vollinger, M.J. Ferric/ferrous ratios in 1984 Mauna Loa lavas: a contribution to understanding the oxidation state of Hawaiian magmas. Contrib Mineral Petrol 149, 666–674 (2005). https://doi.org/10.1007/s00410-005-0662-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-005-0662-y

Keywords

Navigation