Log in

Multi-stage metasomatism of diamondiferous eclogite xenoliths from the Udachnaya kimberlite pipe, Yakutia, Siberia

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The primary garnet (pyrope-almandine)-omphacite (Cpx 1, 6.5–7 wt% Na2O)-sulfide (Fe-Ni-Co mss) assemblage of the two diamondiferous eclogite xenoliths studied (U33/1 and UX/1) experienced two mantle metasomatic events. The metasomatic event I is recorded by the formation of platy phlogopite (~ 10 wt% K2O), prior to incorporation of the xenoliths in the kimberlite. The bulk of the metasomatic alteration, consisting of spongy-textured clinopyroxene (Cpx 2A, 1–3 wt% Na2O), coarser-grained clinopyroxene (Cpx 2B, 2–5 wt% Na2O), pargasitic amphibole (~ 0.8 wt% K2O; 3–3.5 wt% Na2O), kelyphite (Cpx 3, mostly <1 wt% Na2O; and zoned Mg-Fe-Al spinel), sodalite, calcite, K-feldspar, djerfisherite (K5.95Na0.02Fe18.72Ni2.36Co0.01Cu4.08S26Cl ) and a small amount of K-Ca-Fe-Mg glass, is ascribed to the metasomatic event II that occurred also in the upper mantle, but after the xenoliths were incorporated in the kimberlite. A pervasive chloritic alteration (mainly clinochlore + magnetite) that overprints earlier assemblages probably took place in the upper crustal environment. The diamonds are invariably associated with secondary clinopyroxene and chlorite, but the diamonds formed before the entrainment of the xenoliths in the Udachnaya kimberlite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2a,b
Fig. 3a–f
Fig. 4a,b a
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9a–c
Fig. 10a,b
Fig. 11a,b
Fig. 12a–c

Similar content being viewed by others

References

  • Ai Y (1994) Garnet-pyroxene geothermometry. Contrib Mineral Petrol 115:467–473

    CAS  Google Scholar 

  • Anand M, Taylor LA, Misra KC, Carlson WD, Sobolev NV (2003) Diamondiferous eclogite dissections: anomalous diamond genesis? Extended Abstracts #FLA 0084, CD-ROM, 8th International Kimberlite Conf, Victoria, Canada

    Google Scholar 

  • Bailey DK (1984) Kimberlite: “The Mantle Sample” formed by ultrametamorphism. In: Kornprobst J (ed) Kimberlite I: Kimberlites and related rocks. Elsevier, Amsterdam, pp 323–332

  • Beard BL, Frarcci KN, Taylor LA, Snyder GA, Clayton RN, Mayeda TK, Sobolev NV (1996) Petrography and geochemistry of eclogites from the Mir kimberlite, Russia. Contrib Mineral Petrol 125:293–310

    Google Scholar 

  • Bobrievich AP, Smirnov GL, Sobolev VS (1959) An eclogite xenolith with diamonds. Dokl Akad Nauk SSSR 126:637–640 (in Russian)

    CAS  Google Scholar 

  • Bonney TG (1899) The parent rock of the diamond in South Africa. Geol Mag 6:309–321

    Google Scholar 

  • Bulanova GP, Shestakova OE, Leskova NV (1982) Sulfide inclusions in diamonds. Zapiski Vesesoyuznogo Mineralogicheskogo Obshchestva 111:557–562 (in Russian)

    CAS  Google Scholar 

  • Burgess R, Turner G, Harris JW (1992) 40Ar-39Ar laser probe studies of clinopyroxene inclusions in eclogitic diamonds. Geochim Cosmochim Ac 56:389–402

    Article  CAS  Google Scholar 

  • Carswell DA (1975) Primary and secondary phlogopites and clinopyroxenes in garnet lherzolite xenoliths. Phys Chem Earth 9:417–429

    CAS  Google Scholar 

  • Coleman RG, Lee DE, Beatty LB, Brannock WW (1965) Eclogites and eclogites: their differences and similarities. Bull Geol Soc Am 76:483–508

    CAS  Google Scholar 

  • Davis GL (1978) Zircons from the mantle. Carnegie Inst Washington Year Book 77:895–897

    Google Scholar 

  • Dawson JB (1984) Contrasting types of upper mantle metasomatism in the lithospheric mantle. In: Kornprobst J (ed) Kimberlite II: The mantle and crust-mantle relationships. Elsevier, Amsterdam, pp 289–294

  • Dawson JB, Smith JV (1975) Chemistry and origin of phlogopite megacrysts in kimberlite. Nature 253:336–338

    CAS  Google Scholar 

  • Donaldson CH (1978) Petrology of the upper-most mantle deduced from spinel lherzolite nodules at Caton Hill, Derbyshire. Contrib Mineral Petrol 65:363–377

    CAS  Google Scholar 

  • Eggler DH (1973) Role of CO2 in melting processes in the mantle. Carnegie Inst Washington Year Book 72:457–467

    Google Scholar 

  • Ellis DJ, Green DH (1979) An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contrib Mineral Petrol 71:12–22

    Google Scholar 

  • Erlank AJ, Waters FG, Hawkesworth CJ, Haggery SE, Allsop HL, Rickard RS, Menzies MA (1987) Evidence for mantle metasomatism in peridotite nodules from the Kimberly pipes, South Africa. In: Menzies MA, Hawkesworth CJ (eds) Mantle metasomatism. Academic Press, London, pp 221–309

  • Field SW, Haggerty SE, Erlank AJ (1986) Subcontinental metasomatism in the region of Jagersfontein, South Africa. Geol Soc Australia Spec Pub 14:771–783

    Google Scholar 

  • Fuchs LH (1966) Djerfisherite, alkali copper-iron sulfide: a new mineral from enstatite chondrites. Science 153:166–167

    CAS  Google Scholar 

  • Garvie OG, Robinson DN (1984) The formation of kelyphite and associated sub-kelyphytic and sculptured surfaces on pyrope from kimberlite. In: Kornprobst J (ed) Kimberlite I: Kimberlites and related rocks. Elsevier, Amsterdam, pp 371–382

  • Griffin WL, Wass SY, Hollis JD (1984) Ultramafic xenoliths from Bullenmerri and Gnotuk maars, Victoria, Australia; petrology of a subcontinental crust-mantle transition. J Petrol 25:53–87

    CAS  Google Scholar 

  • Gurney JJ, Harte B (1980) Chemical variations in upper mantle nodules from Southern African kimberlites. Phil Trans Royal Soc Lond Ser A 297:273–293

    CAS  Google Scholar 

  • Haggerty SE (1975) The chemistry and genesis of opaque minerals in kimberlites. Phys Chem Earth 9:295–307

    CAS  Google Scholar 

  • Harte B (1983) Mantle peridotites and processes: the kimberlite sample. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva Publishing, Nantwich, UK, pp 46–91

  • Harte B (1987) Metasomatic events recorded in mantle xenoliths: an overview. In: Nixon PH (ed) Mantle xenoliths. Wiley, New York, pp 625–640

  • Hatton CJ, Gurney JJ (1987) Roberts Victor eclogites and their relation to their mantle. In: Nixon PH (ed) Mantle xenoliths. Wiley, New York, pp 453–463

  • Helmstaedet H, Doig R (1975) Eclogite nodules from kimberlite pipes of the Colorado Plateau — samples of Franciscan-type oceanic lithosphere. Phys Chem Earth 9:95–111

    CAS  Google Scholar 

  • Hunter RH, Taylor LA (1982) Instability of garnet from the mantle: glass as evidence of metasomatic melting. Geology 10:617–620

    CAS  Google Scholar 

  • Ireland TR, Rudnick RL, Spetsius Z (1994) Trace elements in diamond inclusions from eclogites reveal link to Archean oceanic crust. Earth Planet Sci Lett 128:199–213

    CAS  Google Scholar 

  • Irving AJ, Frey FA (1976) Effect of composition of the partitioning of rare Earth elements, Hf, Sc and Co between garnet and liquid. EOS 57, 1976

  • Jacob D, Jagoutz E, Lowry D, Mattey D, Kudrjavtseva G (1994) Diamondiferous eclogites from Siberia: remnants of Archean oceanic crust. Geochim Cosmochim Ac 58:5191–5207

    CAS  Google Scholar 

  • Jacob D, Jagoutz E, Lowry D, Zinngrebe E (1998) Comment on “The origins of Yakutian eclogite xenoliths” by GA Snyder, LA Taylor, G Crozaz, AN Halliday, BL Beard, VN Sobolev, NV Sobolev. J Petrol 39:1527–1533

    Article  CAS  Google Scholar 

  • Jagoutz E (1986) Sm-Nd systematics in eclogite from Siberia. 4th International Kimberlite Conference, Extended Abstracts. Geol. Soc. Australia, Perth, Australia, pp 265–266

  • Jagoutz E, Dawson JB, Hoernes S, Spettel B, Wanke H (1984) Anorthosite oceanic crust in the Archean Earth. Lunar Planetary Science XV:395–396

    Google Scholar 

  • Jerde EA, Taylor LA, Crozaz G, Sobolev NV, Sobolev VN (1993) Diamondiferous eclogites from Yakutia, Siberia: Evidence for a diversity of protoliths. Contrib Mineral Petrol 114:189–202

    CAS  Google Scholar 

  • Kinny PD, Griffin BJ, Heaman LM, Brakhfogel FF, Spetsius ZV (1997) SHRIMP U-Pb ages of perovskite from Yakutian kimberlites. Russian Geol Geophysics 38:97–105

    Google Scholar 

  • Krogh EJ (1988) The garnet-clinopyroxene Fe-Mg geothermometer — a reinterpretation of existing experimental data. Contrib Mineral Petrol 99:44–48

    CAS  Google Scholar 

  • Kushiro I, Aoki K (1968) Origin of some eclogite inclusions in kimberlite. Am Mineral 53:1347–1367

    CAS  Google Scholar 

  • Kutolin VA, Frolova VM (1970) Petrology of ultrabasic inclusions from basalts of Minusa and Trans Baikalian regions (Siberia, U.S.S.R.). Contrib Mineral Petrol 29:163–179

    CAS  Google Scholar 

  • MacGregor ID, Carter JL (1970) The chemistry of clinopyroxenes and garnets of eclogite and peridotite xenoliths from the Roberts Victor mine, South Africa. Phys Earth Planet Int 3:391–397

    Article  CAS  Google Scholar 

  • MacGregor ID, Manton WI (1986) The Roberts Victor eclogites; ancient oceanic crust? J Geophys Res 91:14063–14079

    CAS  Google Scholar 

  • McCandless TE, Gurney JJ (1986) Sodium in garnet and potassium in clinopyroxene: Criteria for classifying mantle eclogites. Geol Soc Australia Spec Pub 14:827–832

    Google Scholar 

  • McCormick TC, Smyth JR, Caporuscio FA (1994) Chemical systematics of secondary phases in mantle eclogites. In: Meyer HOA, Leonardos OH (eds) Kimberlites, related rocks, and mantle xenoliths. Companhia de Pesquisa de Recursos Minerals, Rio de Janeiro, Brazil, Spec Pub, pp 405–419

  • Menzies MA, Kempton PD, Dungan MA (1985) Interaction of continental lithosphere and asthenospheric melts below the Geronimo volcanic field, Arizona, U.S.A. J Petrol 26:663–693

    CAS  Google Scholar 

  • Messiga B, Bettini E (1990) Reactions behavior during kelyphite and symplectite formation: A case study of mafic granulites and eclogites from the Bohemian Massif. Eur J Mineral 2:125–144

    CAS  Google Scholar 

  • Misra KC, Fleet ME (1973) The chemical compositions of natural and synthetic pentlandite assemblages: Econ Geol 68:518–539

    Google Scholar 

  • Misra KC, Anand M, Taylor LA, Sobolev NV (2001) Paragenesis of diamonds in eclogite xenoliths from kimberlite pipes, Yakutia: a view from the host eclogite. EOS Trans 82, Am Geophys Union Fall Mtg. Supplement, Abstract V12C-1002

  • Navon O (1999) Diamond formation in the Earth’s mantle. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) 7th International Kimberlite Conference 2. Red Roof Design, Cape Town

  • Neal CR, Taylor LA, Davidson JP, Holden P, Halliday A, Nixon PH, Paces JB, Mayeda TK (1990) Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, part II: Sr, Nd, and O isotope geochemistry. Earth Planet Sci Lett 99:362–379

    Article  CAS  Google Scholar 

  • Nielson JE, Noller JS (1987) Processes of mantle metasomatism; constraints from observations of composite peridotite xenoliths. Geol Soc Am Spec Paper 215, pp 61–76

    Google Scholar 

  • Nixon PH, Davies GR (1987) Mantle xenolith perspectives. In: Nixon PH (ed) Mantle xenoliths. Wiley, New York, pp 742–756

  • Obata M (1994) Material transfer and local equilibria in a zoned kelyphite from a garnet pyroxenite, Ronda, Spain. J Petrol 35:271–287

    CAS  Google Scholar 

  • O’Reilly SY, Griffin WL (1988) Mantle metasomatism beneath western Victoria Australia: I. Metasomatic processes in Cr diopside lherzolites. Geochim Cosmochim Ac 52:433–448

    CAS  Google Scholar 

  • Pasteris JD (1983) Spinel zonation in the De Beers kimberlite, South Africa: Possible role of phlogopite. Can Mineral 21:41–58

    CAS  Google Scholar 

  • Pearson DG, Snyder GA, Shirey SB, Taylor LA, Carlson RW, Sobolev NV (1995) Archean Re-Os age for Siberian eclogites and constraints on Archean tectonics. Nature 374:711–713

    CAS  Google Scholar 

  • Reid AM, Dawson JB (1972) Olivine-garnet reaction in peridotites from Tanzania. Lithos 5:115–124

    Article  CAS  Google Scholar 

  • Reid AM, Donaldson CH, Brown RW, Ridley WI, Dawson JB (1975) Mineral chemistry of peridotite xenoliths from the Lashaine volcano, Tanzania. Phys Chem Earth 9:525–543

    Article  CAS  Google Scholar 

  • Reid AM, Brown RW, Dawson JB, Whitfield GG, Siebert JC (1976) Garnet and clinopyroxene compositions in some diamondiferous eclogites. Contrib Mineral Petrol 58:203–220

    Google Scholar 

  • Rosenhauer M, Eggler DH (1975) Solution of H2O and CO2 in diopside melt. Carnegie Inst Washington Year Book 74:474–479

    Google Scholar 

  • Ryabchikov ID, Schreyer W, Abraham K (1982) Compositions of aqueous fluids in equilibrium with pyroxenes and olivines at mantle pressures and temperatures. Contrib Mineral Petrol 79:80–84

    CAS  Google Scholar 

  • Schrauf S (1882) Beiträge zur Kenntnis des Assoziationskreises der Magnesiasilicate. Z Kristallogr Miner 6:32–88

    Google Scholar 

  • Shee SR, Gurney JJ (1979) The mineralogy of xenoliths from Orapa, Botswana. In: Boyd FR, Meyer HOA (eds) The mantle sample: Inclusions in kimberlites and other volcanics. Am Geophys Union, Washington, pp 37–49

  • Shervais JW, Taylor LA, Lugmair GW, Clayton RN, Mayeda TK, Korotev R (1988) Early Proterozoic oceanic crust and the evolution of subcontinental mantle: Eclogites and related rocks from southern Africa. Geol Soc Am Bull 100:411–423

    Article  CAS  Google Scholar 

  • Skogby H, Bell DR, Rossman GR (1990) Hydroxide in pyroxene: Variations in the natural environment. Am Mineral 75:764–774

    CAS  Google Scholar 

  • Smith D (1979) Hydrous minerals and carbonates in peridotite inclusions from the Green Knobs and Buell Park kimberlitic diatremes on the Colorado Plateau. In: Boyd FR, Meyer HOA (eds) The mantle sample: inclusions in kimberlites and other volcanics. Am Geophys Union, Washington, DC, pp 345–356.

  • Smyth JR, Caporuscio FA (1984) Petrology of a suite of eclogite inclusions from the Bobbejaan kimberlite: II. Primary phase compositions and origin. In: Kornprobst J (ed) Kimberlite II. The mantle and crust-mantle relationships. Elsevier, Amsterdam, pp 121–131

  • Smyth JR, Caporuscio FA, McCormick TC (1989) Mantle eclogites: Evidence of igneous fractionation in the mantle. Earth Planet Sci Lett 93:133–141

    Article  CAS  Google Scholar 

  • Snyder GA, Jerde EA, Taylor LA, Halliday AN, Sobolev VN, Sobolev NV (1993) Nd and Sr isotopes from diamondiferous kimberlite pipe, Yakutia, Siberia: Evidence of differentiation in the early Earth? Earth Planet Sci Lett 118:91–100

    Article  CAS  Google Scholar 

  • Snyder GA, Taylor LA, Jerde EA, Clayton RN, Mayeda K, Deines P, Rossman GR, Sobolev NV (1995) Archean mantle heterogeneity and the diamondiferous eclogites, Siberia: Evidence from stable isotopes and hydroxyl in garnets. Am Mineral 80:799–809

    CAS  Google Scholar 

  • Snyder GA, Taylor LA, Crozaz G, Halliday AN, Beard BL, Sobolev VN, Sobolev NV (1997) The origins of Yakutian eclogite xenoliths. J Petrol 38:85–113

    CAS  Google Scholar 

  • Snyder GA, Taylor LA, Beard BL, Croraz G, Halliday AN, Sobolev VN, Sobolev NV (1998) Reply to a comment by D. Jacob et al. on “The Origins of Yakutian Eclogite Xenoliths”. J Petrol 39:1535–1543

    Article  CAS  Google Scholar 

  • Sobolev NV, Lavrentyev YuG (1971) Isomorphic sodium admixture in garnets formed at high pressures. Contrib Mineral Petrol 31:1–12

    Google Scholar 

  • Sobolev VN, Taylor LA, Snyder GA, Sobolev NV (1994) Diamondiferous eclogites from the Udachnaya kimberlite pipe, Yakutia, Siberia. Int Geol Rev 36:42–64

    Google Scholar 

  • Sobolev VN, Taylor LA, Snyder GA, Jerde EA, Neal CR, Sobolev NV (1999) Quantifying the effects of metasomatism in mantle xenoliths: Constraints from secondary chemistry and mineralogy in Udachnaya eclogites, Yakutia. Int Geol Rev 41:391–416

    Google Scholar 

  • Spetsius ZV (1999) Two generation of diamonds in the eclogite xenoliths. In: Gurney JJ, Gurney JL, Pascoe JD, Richardson SH (eds) Proc 7th International Kimberlite Conference, Cape Town, South Africa. Red Roof Press, Cape Town, South Africa, pp 844–846

  • Spetsius ZV, Griffin BJ (1998) Secondary phases associated with diamonds in eclogites from the Udachnaya kimberlite pipe: Implications for diamond genesis. Proc 7th International Kimberlite Conference, Cape Town, South Africa. Red Roof Press, Cape Town, South Africa, pp 850–852

    Google Scholar 

  • Spetsius ZV, Taylor LA (2002) Partial melting in mantle eclogite xenoliths: Connections with diamond paragenesis. Int Geol Rev 44:973–987

    Google Scholar 

  • Spetsius ZV, Bulanova GP, Leskova NV (1985) Djerfisherite and its genesis in kimberlitic rocks. Dokl Akad Nauk SSSR 293:133–136

    Google Scholar 

  • Taylor LA, Neal CR (1989) Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, Part 1: Mineralogy, petrography, and whole rock chemistry. J Geol 97:551–567

    Google Scholar 

  • Taylor LA, Keller RA, Snyder GA, Wang W, Carlson WD, Hauri HK, McCandless T, Kim Kuk-Rak, Sobolev NV, Bezborodov SM (2000) Diamonds and their mineral inclusions, and what they tell us: A detailed “pull-apart” of a diamondiferous eclogite. Int Geol Rev 42:959–983

    Google Scholar 

  • Taylor LA, Carlson WD, Anand M, Misra K (2001) High-resolution X-ray computed tomography (HRXCT) of diamondiferous eclogites and the origin of diamond [abs]. EOS (Trans Am Geophys Union) 82 (Fall meeting supplement, abstract V12C-1001)

  • Taylor WR, Canil D, Milledge HJ (1996) Kinetics of Ib to IaA nitrogen aggregation in diamond. Geochim Cosmochim Ac 60:4725–4733

    Article  CAS  Google Scholar 

  • Thompson RN (1975) Is upper mantle phosphorus contained in sodic garnet? Earth Planet Sci Lett 26:417–424

    Article  CAS  Google Scholar 

  • Watson EB, Brenan JM, Baker DR (1990) Distribution of fluids in the continental mantle. In: Menzies MA (ed) Continental mantle. Academic Press, London, pp 111–125

  • Wilshire HG (1987) A model of mantle metasomatism. Geol Soc Am Spec Paper 215, pp 47–60

  • Wilshire HG, Binns RA (1961) Basic and ultrabasic xenoliths from volcanic rocks of New South Wales. J Petrol 2:185–208

    CAS  Google Scholar 

  • Wilkins RWT, Sabine W (1973) Water content of some nominally anhydrous silicates. Am Mineral 58:508–516

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this study was provided by NSF grant EAR 99–09430 (L.A.T.). We are thankful to Allan Patchen at the University of Tennessee, Knoxville for assistance with the electron microprobe analyses, and to William D. Carlson, Richard Ketchum, and Cambria Denison at the University of Texas, Austin for their assistance with the HRXCT data. We also thank Timothy Grove and Mark Schmitz for constructive reviews that resulted in significant improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kula C. Misra.

Additional information

Editorial Responsibility: T.L. Grove

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misra, K.C., Anand, M., Taylor, L.A. et al. Multi-stage metasomatism of diamondiferous eclogite xenoliths from the Udachnaya kimberlite pipe, Yakutia, Siberia. Contrib Mineral Petrol 146, 696–714 (2004). https://doi.org/10.1007/s00410-003-0529-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-003-0529-z

Keywords

Navigation