Log in

Regulation of apoptotic pathways during endometriosis: from the molecular basis to the future perspectives

  • Review
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Endometriosis is defined as the presence of endometrial-like endometrial cells, glands and stroma outside the uterus, causing a strong inflammatory-like microenvironment in the affected tissue. This may provoke a breakdown in the peritoneal cavity homeostasis, with the consequent processes of immune alteration, documented by peripheral mononuclear cells recruitment and secretion of inflammatory cytokines in early phases and of angiogenic and fibrogenic cytokines in the late stages of the disease. Considering the pivotal role of interaction between immune and endometriotic cells, in this paper, we aim to shed light about the role of apoptosis pathways in modulating the fine-regulated peritoneal microenvironment during endometriosis.

Methods

Narrative overview, synthesizing the findings of literature retrieved from searches of computerized databases.

Results

In normal conditions, endometriotic cells, refluxed through the fallopian tubes into the peritoneal cavity, should be attacked and removed by phagocytes and NK cells. During endometriosis, the breakdown of peritoneal homeostasis causes the failure of scavenging mechanisms, allowing the survival of endometriotic cells. The consequent so-called “immunoesca**” of endometriotic cells could be due, at least in part, to the reduction of apoptotic-mediated pathways previously described.

Conclusion

Considering the large amount of evidence retrieved from in vitro as well as in vivo models, the reduced apoptosis of endometriotic cells together with the increased apoptosis of peritoneal fluid mononuclear cells may address the peritoneal homeostasis to a permissive environment for the progression of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giudice LC, Kao LC (2004) Endometriosis. Lancet 364:1789–1799. doi:10.1016/S0140-6736(04)17403-5

    Article  PubMed  Google Scholar 

  2. Bulun SE (2009) Endometriosis. N Engl J Med 360:268–279. doi:10.1056/NEJMra0804690

    Article  CAS  PubMed  Google Scholar 

  3. Meuleman C, Vandenabeele B, Fieuws S et al (2009) High prevalence of endometriosis in infertile women with normal ovulation and normospermic partners. Fertil Steril 92:68–74. doi:10.1016/j.fertnstert.2008.04.056

    Article  PubMed  Google Scholar 

  4. Missmer SA, Cramer DW (2003) The epidemiology of endometriosis. Obstet Gynecol Clin North Am 30:1–19. doi:10.1016/S0889-8545(02)00050-5

    Article  PubMed  Google Scholar 

  5. Viganò P, Parazzini F, Somigliana E, Vercellini P (2004) Endometriosis: epidemiology and aetiological factors. Best Pract Res Clin Obstet Gynaecol 18:177–200. doi:10.1016/j.bpobgyn.2004.01.007

    Article  PubMed  Google Scholar 

  6. Triolo O, Laganà AS, Sturlese E (2013) Chronic pelvic pain in endometriosis: an overview. J Clin Med Res 5:153–163

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Butticè S, Laganà AS, Barresi V et al (2013) Lumbar ureteral stenosis due to endometriosis: our experience and review of the literature. Case Rep Urol 2013:812475. doi:10.1155/2013/812475

    PubMed  PubMed Central  Google Scholar 

  8. Laganà AS, Condemi I, Retto G et al (2015) Analysis of psychopathological comorbidity behind the common symptoms and signs of endometriosis. Eur J Obstet Gynecol Reprod Biol 194:30–33. doi:10.1016/j.ejogrb.2015.08.015

    Article  PubMed  Google Scholar 

  9. Sampson JA (1927) Metastatic or embolic endometriosis, due to the menstrual dissemination of endometrial tissue into the venous circulation. Am J Pathol 3(93–110):43

    PubMed  Google Scholar 

  10. Bellelis P, Dias JA Jr, Podgaec S et al (2010) Aspectos epidemiológicos e clínicos da endometriose pélvica: uma série de casos. Rev Assoc Med Bras 56:467–471. doi:10.1590/S0104-42302010000400022

    Article  PubMed  Google Scholar 

  11. Anger DL, Foster WG (2008) The link between environmental toxicant exposure and endometriosis. Front Biosci 13:1578–1593. doi:10.2741/2782

    Article  CAS  PubMed  Google Scholar 

  12. Laganà AS, Sturlese E, Retto G et al (2013) Interplay between misplaced müllerian-derived stem cells and peritoneal immune dysregulation in the pathogenesis of endometriosis. Obstet Gynecol Int 2013:527041. doi:10.1155/2013/527041

    Article  PubMed  PubMed Central  Google Scholar 

  13. Maniglio P, Ricciardi E, Laganà AS et al (2016) Epigenetic modifications of primordial reproductive tract: a common etiologic pathway for Mayer-Rokitansky-Kuster-Hauser Syndrome and endometriosis? Med Hypotheses 90:4–5. doi:10.1016/j.mehy.2016.02.015

    Article  CAS  PubMed  Google Scholar 

  14. Pizzo A, Salmeri FM, Ardita FV et al (2002) Behaviour of cytokine levels in serum and peritoneal fluid of women with endometriosis. Gynecol Obs Invest 54:82–87. doi:10.1159/000067717

    Article  CAS  Google Scholar 

  15. Borrelli GM, Abrão MS, Mechsner S (2014) Can chemokines be used as biomarkers for endometriosis? A systematic review. Hum Reprod 29:253–266. doi:10.1093/humrep/det401

    Article  CAS  PubMed  Google Scholar 

  16. May KE, Villar J, Kirtley S et al (2011) Endometrial alterations in endometriosis: a systematic review of putative biomarkers. Hum Reprod Update 17:637–653. doi:10.1093/humupd/dmr013

    Article  CAS  PubMed  Google Scholar 

  17. Andreoli CG, Genro VK, Souza CA et al (2011) T helper (Th)1, Th2, and Th17 interleukin pathways in infertile patients with minimal/mild endometriosis. Fertil Steril 95:2477–2480. doi:10.1016/j.fertnstert.2011.02.019

    Article  CAS  PubMed  Google Scholar 

  18. Králíčková M, Vetvicka V (2015) Immunological aspects of endometriosis: a review. Ann Transl Med 3:153. doi:10.3978/j.issn.2305-5839.2015.06.08

    PubMed  PubMed Central  Google Scholar 

  19. Laganà AS, Triolo O, Salmeri FM et al (2016) Natural Killer T cell subsets in eutopic and ectopic endometrium: a fresh look to a busy corner. Arch Gynecol Obstet 293:941–949. doi:10.1007/s00404-015-4004-7

    Article  PubMed  Google Scholar 

  20. Hirata T, Osuga Y, Hamasaki K et al (2008) Interleukin (IL)-17A stimulates IL-8 secretion, cyclooxygensase-2 expression, and cell proliferation of endometriotic stromal cells. Endocrinology 149:1260–1267. doi:10.1210/en.2007-0749

    Article  CAS  PubMed  Google Scholar 

  21. Hirata T, Osuga Y, Takamura M et al (2010) Recruitment of CCR6-expressing Th17 cells by CCL 20 secreted from IL-1 beta-, TNF-alpha-, and IL-17A-stimulated endometriotic stromal cells. Endocrinology 151:5468–5476. doi:10.1210/en.2010-0398

    Article  CAS  PubMed  Google Scholar 

  22. Basta P, Majka M, Jozwicki W et al (2010) The frequency of CD25+ CD4+ and FOXP3+ regulatory T cells in ectopic endometrium and ectopic decidua. Reprod Biol Endocrinol 8:116. doi:10.1186/1477-7827-8-116

    Article  PubMed  PubMed Central  Google Scholar 

  23. Berbic M, Fraser IS (2011) Regulatory T cells and other leukocytes in the pathogenesis of endometriosis. J Reprod Immunol 88:149–155. doi:10.1016/j.jri.2010.11.004

    Article  CAS  PubMed  Google Scholar 

  24. Polanczyk MJ, Hopke C, Huan J et al (2005) Enhanced FoxP3 expression and Treg cell function in pregnant and estrogen-treated mice. J Neuroimmunol 170:85–92. doi:10.1016/j.jneuroim.2005.08.023

    Article  CAS  PubMed  Google Scholar 

  25. Polanczyk MJ, Hopke C, Vandenbark Aa, Offner H (2007) Treg suppressive activity involves estrogen-dependent expression of programmed death-1 (PD-1). Int Immunol 19:337–343. doi:10.1093/intimm/dxl151

    Article  CAS  PubMed  Google Scholar 

  26. Sofo V, Götte M, Laganà AS et al (2015) Correlation between dioxin and endometriosis: an epigenetic route to unravel the pathogenesis of the disease. Arch Gynecol Obstet. doi:10.1007/s00404-015-3739-5

    Google Scholar 

  27. Reed JC (2000) Mechanisms of apoptosis. Am J Pathol 157:1415–1430. doi:10.1016/S0002-9440(10)64779-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nuñez G, Benedict MA, Hu Y, Inohara N (1998) Caspases: the proteases of the apoptotic pathway. Oncogene 17:3237–3245. doi:10.1038/sj.onc.1202581

    Article  PubMed  Google Scholar 

  29. Bonora M, Wieckowsk MR, Chinopoulos C et al (2015) Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition. Oncogene 34:1608. doi:10.1038/onc.2014.462

    Article  CAS  PubMed  Google Scholar 

  30. Shi Y (2006) Mechanical aspects of apoptosome assembly. Curr Opin Cell Biol 18:677–684. doi:10.1016/j.ceb.2006.09.006

    Article  CAS  PubMed  Google Scholar 

  31. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    Article  CAS  PubMed  Google Scholar 

  32. Sturlese E, Salmeri FM, Retto G et al (2011) Dysregulation of the Fas/FasL system in mononuclear cells recovered from peritoneal fluid of women with endometriosis. J Reprod Immunol 92:74–81

    Article  CAS  PubMed  Google Scholar 

  33. Salmeri FM, Laganà AS, Sofo V et al (2015) Behavior of tumor necrosis factor-α and tumor necrosis factor receptor 1/tumor necrosis factor receptor 2 system in mononuclear cells recovered from peritoneal fluid of women with endometriosis at different stages. Reprod Sci 22:165–172. doi:10.1177/1933719114536472

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bredesen DE, Mehlen P, Rabizadeh S (2004) Apoptosis and dependence receptors: a molecular basis for cellular addiction. Physiol Rev 84:411–430. doi:10.1152/physrev.00027.2003

    Article  CAS  PubMed  Google Scholar 

  35. Tago K, Funakoshi-Tago M, Itoh H et al (2015) Arf tumor suppressor disrupts the oncogenic positive feedback loop including c-Myc and DDX5. Oncogene 34:314–322. doi:10.1038/onc.2013.561

    Article  CAS  PubMed  Google Scholar 

  36. Song J, Lee B, Kang S et al (2016) Agmatine ameliorates high glucose-induced neuronal cell senescence by regulating the p21 and p53 signaling. Exp Neurobiol 25:24–32. doi:10.5607/en.2016.25.1.24

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chtourou Y, Aouey B, Kebieche M, Fetoui H (2015) Protective role of naringin against cisplatin induced oxidative stress, inflammatory response and apoptosis in rat striatum via suppressing ROS-mediated NF-κB and P53 signaling pathways. Chem Biol Interact 239:76–86. doi:10.1016/j.cbi.2015.06.036

    Article  CAS  PubMed  Google Scholar 

  38. Pan Q, Luo X, Toloubeydokhti T, Chegini N (2007) The expression profile of micro-RNA in endometrium and endometriosis and the influence of ovarian steroids on their expression. Mol Hum Reprod 13:797–806. doi:10.1093/molehr/gam063

    Article  CAS  PubMed  Google Scholar 

  39. Shi XY, Gu L, Chen J et al (2014) Downregulation of miR-183 inhibits apoptosis and enhances the invasive potential of endometrial stromal cells in endometriosis. Int J Mol Med 33:59–67. doi:10.3892/ijmm.2013.1536

    CAS  PubMed  Google Scholar 

  40. Tian X, Xu L, Wang P (2015) MiR-191 inhibits TNF-α induced apoptosis of ovarian endometriosis and endometrioid carcinoma cells by targeting DAPK1. Int J Clin Exp Pathol 8:4933–4942

    PubMed  PubMed Central  Google Scholar 

  41. Long M, Wan X, La X et al (2015) miR-29c is downregulated in the ectopic endometrium and exerts its effects on endometrial cell proliferation, apoptosis and invasion by targeting c-Jun. Int J Mol Med 35:1119–1125. doi:10.3892/ijmm.2015.2082

    CAS  PubMed  Google Scholar 

  42. Wang C, ** A, Huang W et al (2015) Up-regulation of Bcl-2 by CD147 through ERK activation results in abnormal cell survival in human endometriosis. J Clin Endocrinol Metab 100:E955–E963. doi:10.1210/jc.2015-1431

    Article  CAS  PubMed  Google Scholar 

  43. Zubor P, Hatok J, Galo S et al (2009) Anti-apoptotic and pro-apoptotic gene expression evaluated from eutopic endometrium in the proliferative phase of the menstrual cycle among women with endometriosis and healthy controls. Eur J Obstet Gynecol Reprod Biol 145:172–176. doi:10.1016/j.ejogrb.2009.04.024

    Article  CAS  PubMed  Google Scholar 

  44. Korkmaz D, Bastu E, Dural O et al (2013) Apoptosis through regulation of Bcl-2, Bax and Mcl-1 expressions in endometriotic cyst lesions and the endometrium of women with moderate to severe endometriosis. J Obstet Gynaecol 33:725–728. doi:10.3109/01443615.2013.824416

    Article  CAS  PubMed  Google Scholar 

  45. Garcia-Velasco JA, Arici A (2003) Apoptosis and the pathogenesis of endometriosis. Semin Reprod Med 21:165–172. doi:10.1055/s-2003-41323

    Article  CAS  PubMed  Google Scholar 

  46. Harada T, Taniguchi F, Izawa M et al (2007) Apoptosis and endometriosis. Front Biosci 12:3140–3151

    Article  CAS  PubMed  Google Scholar 

  47. Agic A, Djalali S, Diedrich K, Hornung D (2009) Apoptosis in endometriosis. Gynecol Obstet Invest 68:217–223. doi:10.1159/000235871

    Article  PubMed  Google Scholar 

  48. Choi J, Jo M, Lee E et al (2014) Differential induction of autophagy by mTOR is associated with abnormal apoptosis in ovarian endometriotic cysts. Mol Hum Reprod 20:309–317. doi:10.1093/molehr/gat091

    Article  CAS  PubMed  Google Scholar 

  49. Chen X, Wang W, Zhang L et al (2010) Effects of Ad-p27mt gene transfer on the expression of Bax, Bcl-2, VEGF, and MMP-9 in the transplanted liver tumors in nude mice. J Huazhong Univ Sci Technolog Med Sci 30:611–614. doi:10.1007/s11596-010-0551-0

    Article  PubMed  Google Scholar 

  50. Gonçalves GA, Camargo-Kosugi CM, Bonetti TCS et al (2015) p27kip1 overexpression regulates VEGF expression, cell proliferation and apoptosis in cell culture from eutopic endometrium of women with endometriosis. Apoptosis 20:327–335. doi:10.1007/s10495-014-1079-8

    Article  PubMed  Google Scholar 

  51. ** A, Chen H, Wang C et al (2014) Elevated expression of CD147 in patients with endometriosis and its role in regulating apoptosis and migration of human endometrial cells. Fertil Steril 101(1681–7):e1. doi:10.1016/j.fertnstert.2014.02.007

    PubMed  Google Scholar 

  52. Chen Y, Cai S, Wang J, Xu M (2015) Valproic acid-induced histone acetylation suppresses CYP19 gene expression and inhibits the growth and survival of endometrial stromal cells. Int J Mol Med 36:725–732. doi:10.3892/ijmm.2015.2263

    CAS  PubMed  Google Scholar 

  53. Minami T, Kosugi K, Suganuma I et al (2013) Antiproliferative and apoptotic effects of norethisterone on endometriotic stromal cells in vitro. Eur J Obstet Gynecol Reprod Biol 166:76–80. doi:10.1016/j.ejogrb.2012.08.023

    Article  CAS  PubMed  Google Scholar 

  54. Tandrasasmita OM, Sutanto AM, Arifin PF, Tjandrawinata RR (2015) Anti-inflammatory, antiangiogenic, and apoptosis-inducing activity of DLBS1442, a bioactive fraction of Phaleria macrocarpa, in a RL95-2 cell line as a molecular model of endometriosis. Int J Womens Health 7:161–169. doi:10.2147/IJWH.S74552

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Izawa M, Harada T, Deura I et al (2006) Drug-induced apoptosis was markedly attenuated in endometriotic stromal cells. Hum Reprod 21:600–604. doi:10.1093/humrep/dei372

    Article  PubMed  Google Scholar 

  56. Roshangar L, Abdollahifard S, Majdi A et al (2013) Study of ultrastructure and apoptosis in the endometrium of women with or without endometriosis. Iran J Reprod Med 11:399–404

    PubMed  PubMed Central  Google Scholar 

  57. Depalo R, Cavallini A, Lorusso F et al (2009) Apoptosis in normal ovaries of women with and without endometriosis. Reprod Biomed Online 19:808–815

    Article  CAS  PubMed  Google Scholar 

  58. Agostinis C, Zorzet S, De Leo R et al (2015) The combination of N-acetyl cysteine, alpha-lipoic acid, and bromelain shows high anti-inflammatory properties in novel in vivo and in vitro models of endometriosis. Mediators Inflamm 2015:918089. doi:10.1155/2015/918089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jana S, Paul S, Swarnakar S (2012) Curcumin as anti-endometriotic agent: implication of MMP-3 and intrinsic apoptotic pathway. Biochem Pharmacol 83:797–804. doi:10.1016/j.bcp.2011.12.030

    Article  CAS  PubMed  Google Scholar 

  60. García-Pascual CM, Martínez J, Calvo P et al (2015) Evaluation of the potential therapeutic effects of a double-stranded RNA mimic complexed with polycations in an experimental mouse model of endometriosis. Fertil Steril 104:1310–1318. doi:10.1016/j.fertnstert.2015.07.1147

    Article  PubMed  Google Scholar 

  61. Uegaki T, Taniguchi F, Nakamura K et al (2015) Inhibitor of apoptosis proteins (IAPs) may be effective therapeutic targets for treating endometriosis. Hum Reprod 30:149–158. doi:10.1093/humrep/deu288

    Article  PubMed  Google Scholar 

  62. Leconte M, Santulli P, Chouzenoux S et al (2015) Inhibition of MAPK and VEGFR by sorafenib controls the progression of endometriosis. Reprod Sci 22:1171–1180. doi:10.1177/1933719115592708

    Article  CAS  PubMed  Google Scholar 

  63. Wang Y, Lin M, Weng H et al (2014) ENMD-1068, a protease-activated receptor 2 antagonist, inhibits the development of endometriosis in a mouse model. Am J Obstet Gynecol 210(531):e1–e8. doi:10.1016/j.ajog.2014.01.040

    Article  Google Scholar 

  64. Szymanowski K, Mikołajczyk M, Skrzypczak J (2003) Apoptosis expression in rats’ endometrium after surgical induction of endometriosis. Ginekol Pol 74:262–266

    PubMed  Google Scholar 

  65. Sugihara K, Kobayashi Y, Suzuki A et al (2014) Development of pro-apoptotic peptides as potential therapy for peritoneal endometriosis. Nat Commun 5:4478. doi:10.1038/ncomms5478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Borroni R, Di Blasio AM, Gaffuri B et al (2000) Expression of GnRH receptor gene in human ectopic endometrial cells and inhibition of their proliferation by leuprolide acetate. Mol Cell Endocrinol 159:37–43

    Article  CAS  PubMed  Google Scholar 

  67. Khan KN, Kitajima M, Hiraki K et al (2010) Changes in tissue inflammation, angiogenesis and apoptosis in endometriosis, adenomyosis and uterine myoma after GnRH agonist therapy. Hum Reprod 25:642–653. doi:10.1093/humrep/dep437

    Article  CAS  PubMed  Google Scholar 

  68. Selam B, Kayisli UA, Mulayim N, Arici A (2001) Regulation of Fas ligand expression by estradiol and progesterone in human endometrium. Biol Reprod 65:979–985

    Article  CAS  PubMed  Google Scholar 

  69. Otsuki Y (2001) Apoptosis in human endometrium: apoptotic detection methods and signaling. Med Electron Microsc 34:166–173. doi:10.1007/s007950100011

    Article  CAS  PubMed  Google Scholar 

  70. Sbracia M, Valeri C, Antonini G et al (2016) Fas and Fas-ligand in eutopic and ectopic endometrium of women with endometriosis: the possible immune privilege of ectopic endometrium. Reprod Sci 23:81–86. doi:10.1177/1933719115594019

    Article  CAS  PubMed  Google Scholar 

  71. Maeda N, Izumiya C, Taniguchi K et al (2012) Role of NK cells and HLA-G in endometriosis. Front Biosci (Schol Ed) 4:1568–1581

    Article  Google Scholar 

  72. Barrier BF, Kendall BS, Ryan CE, Sharpe-Timms KL (2006) HLA-G is expressed by the glandular epithelium of peritoneal endometriosis but not in eutopic endometrium. Hum Reprod 21:864–869. doi:10.1093/humrep/dei408

    Article  CAS  PubMed  Google Scholar 

  73. Wicherek L (2008) Alterations in RCAS1 serum concentration levels during the normal menstrual cycle and the lack of analogical changes in ovarian endometriosis. Am J Reprod Immunol 59:535–544. doi:10.1111/j.1600-0897.2008.00584.x

    Article  CAS  PubMed  Google Scholar 

  74. Popiela TJ, Klimek M, Wicherek L et al (2006) The characterization of the exposure to immune mediated apoptosis and the regulation of immune cytotoxic activity in the environment of a neoplasm and in decidua. Neuro Endocrinol Lett 27:779–785

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Simone Laganà.

Ethics declarations

Funding

This article was not supported by any fund/grant.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vetvicka, V., Laganà, A.S., Salmeri, F.M. et al. Regulation of apoptotic pathways during endometriosis: from the molecular basis to the future perspectives. Arch Gynecol Obstet 294, 897–904 (2016). https://doi.org/10.1007/s00404-016-4195-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-016-4195-6

Keywords

Navigation