Log in

Changes in joint space width over time and risk factors for deterioration of joint space width after medial opening-wedge high tibial osteotomy

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to evaluate the changes in joint space width (JSW) over time after medial opening-wedge high tibial osteotomy (MOWHTO) and identify risk factors for deterioration of JSW using anteroposterior (AP) and Rosenberg views.

Methods

We retrospectively analyzed changes in JSW of 104 MOWHTO patients whose preoperative osteoarthritis (OA) grade was K-L grade 3 or less on AP and Rosenberg views. Serial changes in JSW were assessed from preoperatively to at least 3 years postoperatively. Patients were divided into two groups according to JSW change patterns on each of AP and Rosenberg views: non-deterioration group had either unchanged or increased JSW, and deterioration group had decreased JSW. Clinical outcomes were compared using Western Ontario and McMaster Universities OA Index (WOMAC) score between groups. Multivariate logistic regression analysis was performed to identify risk factors for deterioration of JSW.

Results

JSW on average for all patients increased 0.5 mm and 0.8 mm on AP and Rosenberg views, respectively (p < 0.05). Non-deterioration group showed significant improvement based on patient-reported outcomes (WOMAC) than deterioration group (all p < 0.05). Undercorrection was an independent risk factor for failure to achieve maintained or increased JSW on both AP (OR 6.885, 95% CI 1.976–23.986, p = 0.002) and Rosenberg (OR 12.756, 95% CI 2.952–55.129, p = 0.001) views.

Conclusion

JSW increased gradually and continuously on standing AP and Rosenberg views until postoperative 3 years after MOWHTO. Deterioration of JSW following MOWHTO was closely related to the undercorrection and affected clinical outcomes.

Level of evidence

Level III, case control study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ji W, Luo C, Zhan Y, **e X, He Q, Zhang B (2019) A residual intra-articular varus after medial opening wedge high tibial osteotomy (HTO) for varus osteoarthritis of the knee. Arch Orthop Trauma Surg 139:743–750. https://doi.org/10.1007/s00402-018-03104-4

    Article  PubMed  Google Scholar 

  2. Kim MS, Son JM, Koh IJ, Bahk JH, In Y (2017) Intraoperative adjustment of alignment under valgus stress reduces outliers in patients undergoing medial opening-wedge high tibial osteotomy. Arch Orthop Trauma Surg 137:1035–1045. https://doi.org/10.1007/s00402-017-2729-4

    Article  PubMed  Google Scholar 

  3. Lee SJ, Kim JH, Choi W (2021) Factors related to the early outcome of medial open wedge high tibial osteotomy: coronal limb alignment affects more than cartilage degeneration state. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-021-03769-4

    Article  PubMed  Google Scholar 

  4. Sohn S, Koh IJ, Kim MS, In Y (2020) Risk factors and preventive strategy for excessive coronal inclination of tibial plateau following medial opening-wedge high tibial osteotomy. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-020-03660-8

    Article  PubMed  Google Scholar 

  5. Pauchard Y, Ivanov TG, McErlain DD, Milner JS, Giffin JR, Birmingham TB, Holdsworth DW (2015) Assessing the local mechanical environment in medial opening wedge high tibial osteotomy using finite element analysis. J Biomech Eng. https://doi.org/10.1115/1.4028966

    Article  PubMed  Google Scholar 

  6. Kim MS, Koh IJ, Choi YJ, Pak KH, In Y (2017) Collagen augmentation improves the quality of cartilage repair after microfracture in patients undergoing high tibial osteotomy: a randomized controlled trial. Am J Sports Med 45:1845–1855. https://doi.org/10.1177/0363546517691942

    Article  PubMed  Google Scholar 

  7. Lafeber FP, Intema F, Van Roermund PM, Marijnissen AC (2006) Unloading joints to treat osteoarthritis, including joint distraction. Curr Opin Rheumatol 18:519–525. https://doi.org/10.1097/01.bor.0000240366.54960.a1

    Article  PubMed  Google Scholar 

  8. van der Woude JAD, Wiegant K, van Heerwaarden RJ, Spruijt S, van Roermund PM, Custers RJH, Mastbergen SC, Lafeber F (2017) Knee joint distraction compared with high tibial osteotomy: a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc 25:876–886. https://doi.org/10.1007/s00167-016-4131-0

    Article  PubMed  Google Scholar 

  9. Jung WH, Takeuchi R, Chun CW, Lee JS, Ha JH, Kim JH, Jeong JH (2014) Second-look arthroscopic assessment of cartilage regeneration after medial opening-wedge high tibial osteotomy. Arthroscopy 30:72–79. https://doi.org/10.1016/j.arthro.2013.10.008

    Article  PubMed  Google Scholar 

  10. Parker DA, Beatty KT, Giuffre B, Scholes CJ, Coolican MR (2011) Articular cartilage changes in patients with osteoarthritis after osteotomy. Am J Sports Med 39:1039–1045. https://doi.org/10.1177/0363546510392702

    Article  PubMed  Google Scholar 

  11. Besselink NJ, Vincken KL, Bartels LW, van Heerwaarden RJ, Concepcion AN, Marijnissen ACA, Spruijt S, Custers RJH, van der Woude JAD, Wiegant K, Welsing PMJ, Mastbergen SC, Lafeber F (2020) Cartilage quality (dGEMRIC Index) following knee joint distraction or high tibial osteotomy. Cartilage 11:19–31. https://doi.org/10.1177/1947603518777578

    Article  PubMed  Google Scholar 

  12. Thambiah MD, Tan MKL, Hui JHP (2017) Role of high tibial osteotomy in cartilage regeneration—is correction of malalignment mandatory for success? Indian J Orthop 51:588–599. https://doi.org/10.4103/ortho.IJOrtho_260_17

    Article  PubMed  PubMed Central  Google Scholar 

  13. Buckland-Wright JC, Macfarlane DG, Lynch JA, Jasani MK, Bradshaw CR (1995) Joint space width measures cartilage thickness in osteoarthritis of the knee: high resolution plain film and double contrast macroradiographic investigation. Ann Rheum Dis 54:263–268. https://doi.org/10.1136/ard.54.4.263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moon H-S, Choi C-H, Yoo J-H, Jung M, Lee T-H, Byun J-W, Kim S-H (2021) An increase in medial joint space width after medial open-wedge high tibial osteotomy is associated with an increase in the postoperative weight-bearing line ratio rather than with cartilage regeneration: comparative analysis of patients who underwent second-look arthroscopic assessment. Arthrosc J Arthrosc Relat Surg 37:657.e654-668.e654

    Google Scholar 

  15. Lee SC, Jung KA, Nam CH, Jung SH, Hwang SH (2010) The short-term follow-up results of open wedge high tibial osteotomy with using an Aescula open wedge plate and an allogenic bone graft: the minimum 1-year follow-up results. Clin Orthop Surg 2:47–54. https://doi.org/10.4055/cios.2010.2.1.47

    Article  PubMed  PubMed Central  Google Scholar 

  16. Babatunde OM, Danoff JR, Patrick DA Jr, Lee JH, Kazam JK, Macaulay W (2016) The combination of the tunnel view and weight-bearing anteroposterior radiographs improves the detection of knee arthritis. Arthritis 2016:9786924. https://doi.org/10.1155/2016/9786924

    Article  PubMed  PubMed Central  Google Scholar 

  17. Courtney P, Melnic C, Howard M, Makani A, Sheth N (2014) A systematic approach to evaluating hip radiographs—a focus on osteoarthritis. J Orthop Rheumatol 2:7

    Google Scholar 

  18. Kan H, Arai Y, Kobayashi M, Nakagawa S, Inoue H, Hino M, Komaki S, Ikoma K, Ueshima K, Fujiwara H, Kubo T (2017) Radiographic measurement of joint space width using the fixed flexion view in 1,102 knees of Japanese patients with osteoarthritis in comparison with the standing extended view. Knee Surg Relat Res 29:63–68. https://doi.org/10.5792/ksrr.16.046

    Article  PubMed  PubMed Central  Google Scholar 

  19. Vignon E, Piperno M, Le Graverand MP, Mazzuca SA, Brandt KD, Mathieu P, Favret H, Vignon M, Merle-Vincent F, Conrozier T (2003) Measurement of radiographic joint space width in the tibiofemoral compartment of the osteoarthritic knee: comparison of standing anteroposterior and Lyon schuss views. Arthritis Rheum 48:378–384. https://doi.org/10.1002/art.10773

    Article  PubMed  Google Scholar 

  20. Nha KW, Oh SM, Ha YW, Patel MK, Seo JH, Lee BH (2019) Radiological grading of osteoarthritis on Rosenberg view has a significant correlation with clinical outcomes after medial open-wedge high-tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 27:2021–2029. https://doi.org/10.1007/s00167-018-5121-1

    Article  PubMed  Google Scholar 

  21. Sohn S, Koh IJ, Kim MS, Kang BM, In Y (2020) What factors predict patient dissatisfaction after contemporary medial opening-wedge high tibial osteotomy? J Arthroplast 35:318–324. https://doi.org/10.1016/j.arth.2019.09.026

    Article  Google Scholar 

  22. Hayashi D, Roemer FW, Guermazi A (2016) Imaging for osteoarthritis. Ann Phys Rehabil Med 59:161–169. https://doi.org/10.1016/j.rehab.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  23. Schiphof D, Boers M, Bierma-Zeinstra SM (2008) Differences in descriptions of Kellgren and Lawrence grades of knee osteoarthritis. Ann Rheum Dis 67:1034–1036. https://doi.org/10.1136/ard.2007.079020

    Article  CAS  PubMed  Google Scholar 

  24. Huizinga MR, Gorter J, Demmer A, Bierma-Zeinstra SMA, Brouwer RW (2017) Progression of medial compartmental osteoarthritis 2–8 years after lateral closing-wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 25:3679–3686. https://doi.org/10.1007/s00167-016-4232-9

    Article  CAS  PubMed  Google Scholar 

  25. Koshino T, Wada S, Ara Y, Saito T (2003) Regeneration of degenerated articular cartilage after high tibial valgus osteotomy for medial compartmental osteoarthritis of the knee. Knee 10:229–236. https://doi.org/10.1016/s0968-0160(03)00005-x

    Article  PubMed  Google Scholar 

  26. van Raaij TM, Takacs I, Reijman M, Verhaar JA (2009) Varus inclination of the proximal tibia or the distal femur does not influence high tibial osteotomy outcome. Knee Surg Sports Traumatol Arthrosc 17:390–395. https://doi.org/10.1007/s00167-008-0708-6

    Article  PubMed  Google Scholar 

  27. El-Azab HM, Morgenstern M, Ahrens P, Schuster T, Imhoff AB, Lorenz SG (2011) Limb alignment after open-wedge high tibial osteotomy and its effect on the clinical outcome. Orthopedics 34:e622-628. https://doi.org/10.3928/01477447-20110826-02

    Article  PubMed  Google Scholar 

  28. Terauchi M, Shirakura K, Katayama M, Higuchi H, Takagishi K, Kimura M (2002) Varus inclination of the distal femur and high tibial osteotomy. J Bone Jt Surg Br 84:223–226. https://doi.org/10.1302/0301-620x.84b2.12136

    Article  CAS  Google Scholar 

  29. Navarro R, Carneiro M (2004) Inclination of the joint line in supracondylar osteotomy of the femur for valgus deformity. Knee 11:319–321. https://doi.org/10.1016/j.knee.2003.09.007

    Article  PubMed  Google Scholar 

  30. Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW (1988) Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol 15:1833–1840

    CAS  PubMed  Google Scholar 

  31. McConnell S, Kolopack P, Davis AM (2001) The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC): a review of its utility and measurement properties. Arthritis Rheum 45:453–461. https://doi.org/10.1002/1529-0131(200110)45:5%3c453::aid-art365%3e3.0.co;2-w

    Article  CAS  PubMed  Google Scholar 

  32. Escobar A, Quintana JM, Bilbao A, Aróstegui I, Lafuente I, Vidaurreta I (2007) Responsiveness and clinically important differences for the WOMAC and SF-36 after total knee replacement. Osteoarthr Cartil 15:273–280. https://doi.org/10.1016/j.joca.2006.09.001

    Article  CAS  Google Scholar 

  33. Smith GD, Richardson IB (2004) Radiographic measurement of joint space height in non-osteoarthritic tibiofemoral joints. J Bone Jt Surg Br 86:932–933 (author reply 933)

    Article  CAS  Google Scholar 

  34. Peterfy C, Li J, Zaim S, Duryea J, Lynch J, Miaux Y, Yu W, Genant HK (2003) Comparison of fixed-flexion positioning with fluoroscopic semi-flexed positioning for quantifying radiographic joint-space width in the knee: test–retest reproducibility. Skelet Radiol 32:128–132. https://doi.org/10.1007/s00256-002-0603-z

    Article  CAS  Google Scholar 

  35. Rosenberg TD, Paulos LE, Parker RD, Coward DB, Scott SM (1988) The forty-five-degree posteroanterior flexion weight-bearing radiograph of the knee. J Bone Jt Surg Am 70:1479–1483

    Article  CAS  Google Scholar 

  36. Park CH, Bae DK, Kim KI, Lee JW, Song SJ (2017) Serial changes in the joint space width and joint line convergence angle after closed-wedge high tibial osteotomy. Am J Sports Med 45:3254–3261. https://doi.org/10.1177/0363546517729153

    Article  PubMed  Google Scholar 

  37. Bruyere O, Genant H, Kothari M, Zaim S, White D, Peterfy C, Burlet N, Richy F, Ethgen D, Montague T, Dabrowski C, Reginster JY (2007) Longitudinal study of magnetic resonance imaging and standard X-rays to assess disease progression in osteoarthritis. Osteoarthr Cart 15:98–103. https://doi.org/10.1016/j.joca.2006.06.018

    Article  CAS  Google Scholar 

  38. Duryea J, Neumann G, Niu J, Totterman S, Tamez J, Dabrowski C, Le Graverand MP, Luchi M, Beals CR, Hunter DJ (2010) Comparison of radiographic joint space width with magnetic resonance imaging cartilage morphometry: analysis of longitudinal data from the Osteoarthritis Initiative. Arthritis Care Res (Hoboken) 62:932–937. https://doi.org/10.1002/acr.20148

    Article  Google Scholar 

  39. Hall J, Laslett LL, Martel-Pelletier J, Pelletier JP, Abram F, Ding CH, Cicuttini FM, Jones G (2016) Change in knee structure and change in tibiofemoral joint space width: a five year longitudinal population-based study. BMC Musculoskelet Disord 17:25. https://doi.org/10.1186/s12891-016-0879-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oak SR, Ghodadra A, Winalski CS, Miniaci A, Jones MH (2013) Radiographic joint space width is correlated with 4-year clinical outcomes in patients with knee osteoarthritis: data from the osteoarthritis initiative. Osteoarthr Cart 21:1185–1190

    Article  CAS  Google Scholar 

  41. Lee OS, Lee SH, Mok SJ, Lee YS (2019) Comparison of the regeneration of cartilage and the clinical outcomes after the open wedge high tibial osteotomy with or without microfracture: a retrospective case control study. BMC Musculoskelet Disord 20:267. https://doi.org/10.1186/s12891-019-2607-z

    Article  PubMed  PubMed Central  Google Scholar 

  42. Eckstein F, Collins JE, Nevitt MC, Lynch JA, Kraus VB, Katz JN, Losina E, Wirth W, Guermazi A, Roemer FW, Hunter DJ (2015) Brief report: cartilage thickness change as an imaging biomarker of knee osteoarthritis progression: data from the Foundation for the National Institutes of Health Osteoarthritis Biomarkers Consortium. Arthritis Rheumatol 67:3184–3189. https://doi.org/10.1002/art.39324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bae DK, Yoon KH, Song SJ (2006) Cartilage healing after microfracture in osteoarthritic knees. Arthroscopy 22:367–374. https://doi.org/10.1016/j.arthro.2006.01.015

    Article  PubMed  Google Scholar 

  44. Hunter DJ, Zhang YQ, Tu X, Lavalley M, Niu JB, Amin S, Guermazi A, Genant H, Gale D, Felson DT (2006) Change in joint space width: hyaline articular cartilage loss or alteration in meniscus? Arthritis Rheum 54:2488–2495. https://doi.org/10.1002/art.22016

    Article  CAS  PubMed  Google Scholar 

  45. Ding C, Garnero P, Cicuttini F, Scott F, Cooley H, Jones G (2005) Knee cartilage defects: association with early radiographic osteoarthritis, decreased cartilage volume, increased joint surface area and type II collagen breakdown. Osteoarthr Cart 13:198–205. https://doi.org/10.1016/j.joca.2004.11.007

    Article  Google Scholar 

  46. Altman R, Brandt K, Hochberg M, Moskowitz R, Bellamy N, Bloch DA, Buckwalter J, Dougados M, Ehrlich G, Lequesne M, Lohmander S, Murphy WA Jr, Rosario-Jansen T, Schwartz B, Trippel S (1996) Design and conduct of clinical trials in patients with osteoarthritis: recommendations from a task force of the Osteoarthritis Research Society. Results from a workshop. Osteoarthr Cartil 4:217–243. https://doi.org/10.1016/s1063-4584(05)80101-3

    Article  CAS  Google Scholar 

  47. Hunter DJ, Le Graverand MP, Eckstein F (2009) Radiologic markers of osteoarthritis progression. Curr Opin Rheumatol 21:110–117. https://doi.org/10.1097/BOR.0b013e3283235add

    Article  PubMed  Google Scholar 

  48. Segal NA, Frick E, Duryea J, Roemer F, Guermazi A, Nevitt MC, Torner JC, Felson DT, Anderson DD (2016) Correlations of medial joint space width on fixed-flexed standing computed tomography and radiographs with cartilage and meniscal morphology on magnetic resonance imaging. Arthritis Care Res (Hoboken) 68:1410–1416. https://doi.org/10.1002/acr.22888

    Article  CAS  Google Scholar 

  49. Çelik D, Çoban Ö, Kılıçoğlu Ö (2019) Minimal clinically important difference of commonly used hip-, knee-, foot-, and ankle-specific questionnaires: a systematic review. J Clin Epidemiol 113:44–57. https://doi.org/10.1016/j.jclinepi.2019.04.017

    Article  PubMed  Google Scholar 

  50. Kumagai K, Akamatsu Y, Kobayashi H, Kusayama Y, Koshino T, Saito T (2017) Factors affecting cartilage repair after medial opening-wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 25:779–784. https://doi.org/10.1007/s00167-016-4096-z

    Article  PubMed  Google Scholar 

  51. Tsukada S, Wakui M (2017) Is overcorrection preferable for repair of degenerated articular cartilage after open-wedge high tibial osteotomy? Knee Surg Sports Traumatol Arthrosc 25:785–792. https://doi.org/10.1007/s00167-015-3655-z

    Article  PubMed  Google Scholar 

  52. Fujisawa Y, Masuhara K, Shiomi S (1979) The effect of high tibial osteotomy on osteoarthritis of the knee. An arthroscopic study of 54 knee joints. Orthop Clin N Am 10:585–608

    Article  CAS  Google Scholar 

  53. Odenbring S, Egund N, Lindstrand A, Lohmander LS, Willén H (1992) Cartilage regeneration after proximal tibial osteotomy for medial gonarthrosis. An arthroscopic, roentgenographic, and histologic study. Clin Orthop Relat Res 277:210–216

    Article  Google Scholar 

  54. Oh KJ, Ko YB, Bae JH, Yoon ST, Kim JG (2016) Analysis of knee joint line obliquity after high tibial osteotomy. J Knee Surg 29:649–657. https://doi.org/10.1055/s-0036-1571430

    Article  PubMed  Google Scholar 

  55. Schröter S, Ihle C, Mueller J, Lobenhoffer P, Stöckle U, van Heerwaarden R (2013) Digital planning of high tibial osteotomy. Interrater reliability by using two different software. Knee Surg Sports Traumatol Arthrosc 21:189–196. https://doi.org/10.1007/s00167-012-2114-3

    Article  PubMed  Google Scholar 

  56. Akamatsu Y, Nejima S, Tsuji M, Kobayashi H, Muramatsu S (2021) Open-wedge high tibial osteotomy using intraoperative control of joint line convergence angle with reference to preoperative supine radiograph. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-020-03738-3

    Article  PubMed  Google Scholar 

  57. Kumagai K, Yamada S, Akamatsu T, Nejima S, Ogino T, Sotozawa M, Inaba Y (2021) Intraoperatively accurate limb alignment after opening wedge high tibial osteotomy can be lost by large knee joint line convergence angle during surgery. Arch Orthop Trauma Surg 141:23–28. https://doi.org/10.1007/s00402-020-03419-1

    Article  PubMed  Google Scholar 

  58. Lee DH, Park SC, Park HJ, Han SB (2016) Effect of soft tissue laxity of the knee joint on limb alignment correction in open-wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 24:3704–3712. https://doi.org/10.1007/s00167-015-3682-9

    Article  PubMed  Google Scholar 

  59. Na YG, Lee BK, Choi JU, Lee BH, Sim JA (2021) Change of joint-line convergence angle should be considered for accurate alignment correction in high tibial osteotomy. Knee Surg Relat Res 33:4. https://doi.org/10.1186/s43019-020-00076-x

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Source of funding, there was no external funding source in this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong In.

Ethics declarations

Conflict of interest

All authors of this study declare that there is no conflict of interest relevant to this study.

Ethical approval

All procedures performed in studies involving human participants were in accordance with ethical standards of the institutional and/or national research committee, the 1964 Helsinki Declaration, and its later amendments or comparable ethical standards. This study was approved by IRB of Seoul St. Mary’s Hospital, the Catholic University of Korea (Study No.: KC20RISI0694). This study obtained institutional review board approval from the Institutional Review Board (IRB) of Seoul St. Mary’s Hospital (KC20RISI0694) and informed written consent for participation in the study was obtained.

Informed consent

Informed consent was obtained from all individual participants included in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M.S., Koh, I.J., Choi, K.Y. et al. Changes in joint space width over time and risk factors for deterioration of joint space width after medial opening-wedge high tibial osteotomy. Arch Orthop Trauma Surg 142, 2513–2524 (2022). https://doi.org/10.1007/s00402-021-03876-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-021-03876-2

Keywords

Navigation