Log in

Percutaneous cerclage wiring and minimally invasive plate osteosynthesis (MIPO): a percutaneous reduction technique in the treatment of Vancouver type B1 periprosthetic femoral shaft fractures

  • Trauma Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Background

Periprosthetic femoral fractures (PPFs) associated at or near a well-fixed femoral prostheses (Vancouver type-B1) present a clinical challenge due to the quality of the bone stock and instability of the fracture.

Objectives

The purpose of this study was to present a novel reduction technique and analyze clinical and radiographic outcome in patients with Vancouver type-B1 fractures treated with percutaneous cerclage wiring for fracture reduction and maintenance of reduction with minimally invasive plate osteosynthesis (MIPO) utilizing a locking compression plate (LCP).

Methods

Between March 2007 and December 2008, ten consecutive patients with spiral, oblique or wedge Vancouver type-B1 were treated with closed percutaneous cerclage wiring using a new cerclage passer instrument (Synthes®) through small 2–3 cm incisions for reduction and maintenance of reduction. Internal fixation with MIPO was obtained utilizing a long LCP Synthes® bridging the fracture. The reduction time, fixation time and operative time were recorded. The rehabilitation protocol consisted of partial weight bearing as tolerated. Clinical and radiographic outcomes included evidence of union, return to pre-injury mobility, and surgical complications were recorded.

Results

There were three men and seven women with an average age of 74 years (range 47–84 years) at the time the fracture occured. The average follow-up was 13.2 months. One patient died 2 months after surgery due to cardiovascular problems and was excluded. The average reduction time with percutaneous cerclage wiring was 24.4 min (range 7–45 min). The average fixation time was 79 min (range 53–100 min). The average operative time was 103 min (range 75–140 min). Blood loss was minimal and only two patients needed a blood transfusion. All fractures healed with a mean time to union of 18 weeks (range 16–20 weeks). There was one implant which bent 10° in the post-operative period but went on to heal uneventfully within 16 weeks. There was no evidence of loosening of any implants. Seven patients returned to their previous level of mobility. Two patients required a walker. There were no implant failures, wound complications or infections.

Conclusions

Percutaneous reduction of spiral, oblique or wedge-type B1 PPFs with percutaneous cerclage wiring combined with minimally invasive locking plate osteosynthesis provided satisfactory reduction, adequate stability and healing in nine patients. Our early results suggest that this reduction technique and fixation may be a useful solution for this growing challenge in orthopaedics. The authors caution that this technique must be done carefully to avoid serious complications, e.g., vascular injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zuurmond RG, van Wijhe W, van Raay JJ, Bulstra SK (2010) High incidence of complications and poor clinical outcome in the operative treatment of periprosthetic femoral fractures: an analysis of 71 cases. Injury 41(6):629–633

    Article  PubMed  CAS  Google Scholar 

  2. Xue H, Tu Y, Cai M, Yang A (2010) Locking compression plate and cerclage band for type B1 periprosthetic femoral fractures preliminary results at average 30-month follow-up. J Arthroplast. doi:10.1016/j.arth.2010.03.031

    Google Scholar 

  3. Duncan CP, Masri BA (1995) Fractures of the femur after hip replacement. Instr Course Lect 44:293–304

    PubMed  CAS  Google Scholar 

  4. Scott RD, Turner RH, Leitzes SM, Aufranc OE (1975) Femoral fractures in conjunction with total hip replacement. J Bone Joint Surg Am 57(4):494–501

    PubMed  CAS  Google Scholar 

  5. Khan MA, O’Driscoll M (1977) Fractures of the femur during total hip replacement and their management. J Bone Joint Surg Br 59(1):36–41

    PubMed  CAS  Google Scholar 

  6. Johansson JE, McBroom R, Barrington TW, Hunter GA (1981) Fracture of the ipsilateral femur in patients with total hip replacement. J Bone Joint Surg Am 63(9):1435–1442

    PubMed  CAS  Google Scholar 

  7. Bethea JS 3rd, DeAndrade JR, Fleming LL, Lindenbaum SD, Welch RB (1982) Proximal femoral fractures following total hip arthroplasty. Clin Orthop Relat Res 170:95–106

    PubMed  Google Scholar 

  8. Habernek H, Walch G, Dengg C, Orthner E (1989) Percutaneous Goetze cerclage in torsion fractures of the tibia. A computer-assisted follow-up of 186 cases. Aktuelle Traumatol 19(2):73–76

    PubMed  CAS  Google Scholar 

  9. Tsiridis E, Haddad FS, Gie GA (2003) Dall-Miles plates for periprosthetic femoral fractures. A critical review of 16 cases. Injury 34(2):107–110

    Article  PubMed  Google Scholar 

  10. Mast JJR, Ganz R (1989) Planning and reduction technique in fracture surgery. Springer, Berlin

    Book  Google Scholar 

  11. Krettek C, Schandelmaier P, Miclau T, Tscherne H (1997) Minimally invasive percutaneous plate osteosynthesis (MIPPO) using the DCS in proximal and distal femoral fractures. Injury 28(Suppl 1):A20–A30

    Article  PubMed  Google Scholar 

  12. Apivatthakakul T, Chiewcharntanakit S (2009) Minimally invasive plate osteosynthesis (MIPO) in the treatment of the femoral shaft fracture where intramedullary nailing is not indicated. Int Orthop 33(4):1119–1126

    Article  PubMed  CAS  Google Scholar 

  13. Bong MR, Egol KA, Koval KJ, Kummer FJ, Su ET, Iesaka K, Bayer J, Di Cesare PE (2002) Comparison of the LISS and a retrograde-inserted supracondylar intramedullary nail for fixation of a periprosthetic distal femur fracture proximal to a total knee arthroplasty. J Arthroplasty 17(7):876–881

    Article  PubMed  Google Scholar 

  14. Ricci WM, Bolhofner BR, Loftus T, Cox C, Mitchell S, Borrelli J Jr (2005) Indirect reduction and plate fixation, without grafting, for periprosthetic femoral shaft fractures about a stable intramedullary implant. J Bone Joint Surg Am 87(10):2240–2245

    Article  PubMed  Google Scholar 

  15. Chakravarthy J, Bansal R, Cooper J (2007) Locking plate osteosynthesis for Vancouver type B1 and type C periprosthetic fractures of femur: a report on 12 patients. Injury 38(6):725–733

    Article  PubMed  Google Scholar 

  16. Fulkerson E, Tejwani N, Stuchin S, Egol K (2007) Management of periprosthetic femur fractures with a first generation locking plate. Injury 38(8):965–972

    Article  PubMed  Google Scholar 

  17. Pike J, Davidson D, Garbuz D, Duncan CP, O’Brien PJ, Masri BA (2009) Principles of treatment for periprosthetic femoral shaft fractures around well-fixed total hip arthroplasty. J Am Acad Orthop Surg 17(11):677–688

    PubMed  Google Scholar 

  18. Sen R, Prasad P, Kumar S, Nagi O (2007) Periprosthetic femoral fractures around well fixed implants: a simple method of fixation using LC-DCP with trochanteric purchase. Acta Orthop Belg 73(2):200–206

    PubMed  Google Scholar 

  19. Haddad FS, Duncan CP, Berry DJ, Lewallen DG, Gross AE, Chandler HP (2002) Periprosthetic femoral fractures around well-fixed implants: use of cortical onlay allografts with or without a plate. J Bone Joint Surg Am 84-A(6):945–950

    PubMed  Google Scholar 

  20. Ricci WM, Borrelli J Jr (2007) Operative management of periprosthetic femur fractures in the elderly using biological fracture reduction and fixation techniques. Injury 38(Suppl 3):S53–S58

    Article  PubMed  Google Scholar 

  21. Perren SM (2002) The technology of minimally invasive percutaneous osteosynthesis (MIPO). Injury 33(Suppl 1):VI–VII

    Article  PubMed  Google Scholar 

  22. Gautier E, Sommer C (2003) Guidelines for the clinical application of the LCP. Injury 34(Suppl 2):B63–B76

    Article  PubMed  Google Scholar 

  23. Abhaykumar S, Elliott DS (2000) Percutaneous plate fixation for periprosthetic femoral fractures—a preliminary report. Injury 31(8):627–630

    Article  PubMed  CAS  Google Scholar 

  24. Buttaro MA, Farfalli G, Paredes Nunez M, Comba F, Piccaluga F (2007) Locking compression plate fixation of Vancouver type-B1 periprosthetic femoral fractures. J Bone Joint Surg Am 89(9):1964–1969

    Article  PubMed  CAS  Google Scholar 

  25. Habernek H (1991) Percutaneous cerclage wiring and interlocking nailing for treatment of torsional fractures of the tibia. Clin Orthop Relat Res 267:164–168

    PubMed  Google Scholar 

  26. van Steijn MJ, Verhaar JA (1997) Osteonecrosis caused by percutaneous cerclage wiring of a tibial fracture: case report. J Trauma 43(3):521–522

    Article  PubMed  Google Scholar 

  27. Perren SM, Fernandez Dell’Oca A, Lenz M, Windolf M (2011) Cerclage, evolution and potential of a Cinderella technology. An overview with reference to periprosthetic fractures. Acta Chir Orthop Traumatol Cech 78(3):190–199

    PubMed  CAS  Google Scholar 

  28. Kirby BM, Wilson JW (1991) Effect of circumferential bands on cortical vascularity and viability. J Orthop Res 9(2):174–179

    Article  PubMed  CAS  Google Scholar 

  29. Farouk O, Krettek C, Miclau T, Schandelmaier P, Tscherne H (1999) The topography of the perforating vessels of the deep femoral artery. Clin Orthop Relat Res 368:255–259

    Article  PubMed  Google Scholar 

  30. Farouk O, Krettek C, Miclau T, Schandelmaier P, Guy P, Tscherne H (1997) Minimally invasive plate osteosynthesis and vascularity: preliminary results of a cadaver injection study. Injury 28(Suppl 1):A7–A12

    Article  PubMed  Google Scholar 

  31. Mehta V, Finn HA (2005) Femoral artery and vein injury after cerclage wiring of the femur: a case report. J Arthroplasty 20(6):811–814

    Article  PubMed  Google Scholar 

  32. Pape HC, Tarkin IS (2009) Intraoperative reduction techniques for difficult femoral fractures. J Orthop Trauma 23(5 Suppl):S6–S11

    Article  PubMed  Google Scholar 

  33. Erhardt JB, Grob K, Roderer G, Hoffmann A, Forster TN, Kuster MS (2008) Treatment of periprosthetic femur fractures with the non-contact bridging plate: a new angular stable implant. Arch Orthop Trauma Surg 128(4):409–416

    Article  PubMed  CAS  Google Scholar 

  34. Kumar V, Kanabar P, Owen PJ, Rushton N (2008) Less invasive stabilization system for the management of periprosthetic femoral fractures around hip arthroplasty. J Arthroplasty 23(3):446–450

    Article  PubMed  Google Scholar 

  35. Ebraheim NA, Gomez C, Ramineni SK, Liu J (2009) Fixation of periprosthetic femoral shaft fractures adjacent to a well-fixed femoral stem with reversed distal femoral locking plate. J Trauma 66(4):1152–1157

    Article  PubMed  Google Scholar 

  36. Ehlinger M, Bonnomet F, Adam P (2010) Periprosthetic femoral fractures: the minimally invasive fixation option. Orthop Traumatol Surg Res 96(3):304–309

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

No conflict of interest is present.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theerachai Apivatthakakul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apivatthakakul, T., Phornphutkul, C., Bunmaprasert, T. et al. Percutaneous cerclage wiring and minimally invasive plate osteosynthesis (MIPO): a percutaneous reduction technique in the treatment of Vancouver type B1 periprosthetic femoral shaft fractures. Arch Orthop Trauma Surg 132, 813–822 (2012). https://doi.org/10.1007/s00402-012-1489-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-012-1489-4

Keywords

Navigation