Log in

Neuropathological and behavioral changes induced by various treatment paradigms with MPTP and 3-nitropropionic acid in mice: towards a model of striatonigral degeneration (multiple system atrophy)

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

We characterized two models of dual nigral and striatal lesions replicating the lesion pattern of striatonigral degeneration, the neuropathological hallmark of parkinsonism associated with multiple system atrophy (SND/MSA-P). For this purpose, we used systemic administration of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) and 3-nitropropionic acid (3-NP) in C57BL mice. One group of animals was first injected with MPTP followed by 3NP (MPTP+3-NP model).In the second group 3-NP was injected first, followed by MPTP (3-NP+MPTP model). The behavioral and neuropathological characteristics of these two models were compared to those observed after single 3-NP or MPTP intoxication. Results showed that, compared to control mice, spontaneous nocturnal locomotor activity was preserved in the MPTP+3-NP model, whereas it was reduced by 27% (P<0.05) in the 3-NP+MPTP model and in animals treated with either 3-NP (27%, P<0.05) or MPTP (23%, P<0.05) alone. Quantitative histological evaluation based on Nissl staining and DARPP-32 immunohistochemistry revealed that 3-NP alone and 3-NP+MPTP treatment produced a marked (greater than 50%) loss of striatal neurons, whereas MPTP+3-NP treatment attenuated loss of striatal neurons by 43%. Further, loss of tyrosine hydroxylase-positive neurons in substantia nigra pars compacta (SNc) was attenuated after 3-NP+MPTP treatment compared to that observed after MPTP (40% vs 74%, P<0.001) and MPTP+3NP treatment (55% vs 74%, P<0.01). Our results show that MPTP-induced nigral lesions attenuate 3-NP toxicity and, reciprocally, that 3-NP-induced striatal lesions reduce MPTP toxicity. This suggests that complex integrative mechanisms are likely to regulate the vulnerability of the striatum and SNc to cell death in SND/MSA-P.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1. A
Fig. 2. A
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Adams RD, Bogaert L van, Eecken H van der (1964) Striato-nigral degeneration. J Neuropathol Exp Neurol 23:584–608

    CAS  Google Scholar 

  2. Andreassen OA, Ferrante RJ, Hughes DB, Klivenyi P, Dedeoglu A, Ona VO, Friedlander RM, Beal MF (2000) Malonate and 3-nitropropionic acid neurotoxicity are reduced in transgenic mice expressing a caspase-1 dominant-negative mutant. J Neurochem 75:847–852

    Article  CAS  PubMed  Google Scholar 

  3. Andrews JM, Terry RD, Spataro J (1970) Striatonigral degeneration. Clinical-pathological study and response to stereotaxic surgery. Arch Neurol 23:319–329

    CAS  PubMed  Google Scholar 

  4. Beal MF (1994) Neurochemistry and toxin models in Huntington's disease. Curr Opin Neurol 7:542–547

    CAS  PubMed  Google Scholar 

  5. Beal MF, Brouillet E, Jenkins BG, Ferrante RJ, Kowall NW, Miller JM, Storey E, Srivastrava R, Rosen BR, Hyman BT (1993) Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci 13:4181–4192

    CAS  PubMed  Google Scholar 

  6. Berman SB, Hastings TG (1997) Inhibition of glutamate transport in synaptosomes by dopamine oxidation and reactive oxygen species. J Neurochem 69:1185–1195

    CAS  PubMed  Google Scholar 

  7. Bezard E, Dovero S, Bioulac B, Gross CE (1997) Effects of different schedules of MPTP administration on dopaminergic neurodegeneration in mice. Exp Neurol 148:288–292

    Article  CAS  PubMed  Google Scholar 

  8. Bezard E, Dovero S, Bioulac B, Gross CE (1997) Kinetics of nigral degeneration in chronic model of MPTP treated mice. Neurosci Lett 234:47–50

    Article  CAS  PubMed  Google Scholar 

  9. Bogdanov MB, Ferrante RJ, Kuemmerle S, Klivenyi P, Beal MF (1998) Increased vulnerability to 3-nitropropionic acid in an animal model of Huntington's disease. J Neurochem 71:2642–2644

    CAS  PubMed  Google Scholar 

  10. Bogdanov MB, Ferrante RJ, Mueller G, Ramos LE, Martinou JC, Beal MF (1999) Oxidative stress is attenuated in mice overexpressing BCL-2. Neurosci Lett 262:33–36

    Article  CAS  PubMed  Google Scholar 

  11. Borit A, Rubinstein LJ, Urich H (1975) The striatonigral degenerations. Brain 98:101–112

    CAS  PubMed  Google Scholar 

  12. Borlongan C, Koutouzis TK, Freeman TB, Cahill DW, Sanberg PR (1995) Behavioral pathology induced by repeated systemic injections of 3-nitropropionic acid mimics the motoric symptoms of Huntington's disease. Brain Res 697:254–257

    Article  CAS  PubMed  Google Scholar 

  13. Brouillet E, Hantraye P, Ferrante RJ, Dolan R, Leroy-Willig A, Kowall NW, Beal MF (1995) Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc Natl Acad Sci USA 92:7105–7109

    CAS  PubMed  Google Scholar 

  14. Brouillet E, Conde F, Beal MF, Hantraye P (1999) Replicating Huntington's disease phenotype in experimental animals. Prog Neurobiol 59:427–468

    Article  CAS  PubMed  Google Scholar 

  15. Burn DJ, Jaros E (2001) Multiple system atrophy: cellular and molecular pathology. J Clin Pathol Mol Pathol 54:419–426

    CAS  Google Scholar 

  16. Calabresi P, Gubellini P, Picconi B, Centonze D, Pisani A, Bonsi P, Greengard P, Hipskind RA, Borrelli E, Bernardi G (2001) Inhibition of mitochondrial complex II induces a long-term potentiation of NMDA-mediated synaptic excitation in the striatum requiring endogenous dopamine. J Neurosci 21:5110–5120

    CAS  PubMed  Google Scholar 

  17. Clemens JA, Phebus LA (1988) Dopamine depletion protects striatal neurons from ischemia-induced cell death. Life Sci 42:707–713

    CAS  PubMed  Google Scholar 

  18. Daniel S (1999) The neuropathology and neurochemistry of multiple system atrophy, In: Mathias CJ, Bannister R (eds) Autonomic failure. University Press, Oxford, pp 321–328

  19. Fearnley JM, Lees AJ (1990) Striatonigral degeneration. A clinicopathological study. Brain 113:1823–1842

    PubMed  Google Scholar 

  20. Filloux F, Townsend JJ (1993) Pre- and postsynaptic neurotoxic effects of dopamine demonstrated by intrastriatal injection. Exp Neurol 119:79–88

    CAS  PubMed  Google Scholar 

  21. Frechilla D, Cobreros A, Saldise L, Moratalla R, Insausti R, Luquin M, Del Rio J (2001) Serotonin 5-HT(1A) receptor expression is selectively enhanced in the striosomal compartment of chronic parkinsonian monkeys. Synapse 39:288–296

    Article  CAS  PubMed  Google Scholar 

  22. Fredriksson A, Palomo T, Chase T, Archer T (1999) Tolerance to a suprathreshold dose ofl-Dopa in MPTP mice: effects of glutamate antagonists. J Neural Transm 106:283–300

    Article  CAS  PubMed  Google Scholar 

  23. Gaffori O, Le Moal M, Stinus L (1980) Locomotor hyperactivity and hypoexploration after lesion of the dopaminergic-A10 area in the ventral mesencephalic tegmentum (VMT) of rats. Behav Brain Res 1:313–329

    Article  CAS  PubMed  Google Scholar 

  24. Ghorayeb I, Fernagut PO, Aubert I, Bezard E, Poewe W, Wenning GK, Tison F (2000) Toward a primate model ofl-dopa-unresponsive parkinsonism mimicking striatonigral degeneration. Mov Disord 15:531–536

    Article  CAS  PubMed  Google Scholar 

  25. Ghorayeb I, Puschban Z, Fernagut PO, Scherfler C, Rouland R, Wenning GK, Tison F (2001) Simultaneous intrastriatal 6-hydroxydopamine and quinolinic acid injection: a model of early-stage striatonigral degeneration. Exp Neurol 167:133–147

    Article  CAS  PubMed  Google Scholar 

  26. Godukhin OV, Zharikova AD, Budantsev AY (1984) Role of presynaptic dopamine receptors in regulation of the glutamatergic neurotransmission in rat neostriatum. Neuroscience 12:377–383

    Article  CAS  PubMed  Google Scholar 

  27. Goto S, Hirano A, Matsumoto S (1989) Subdivisional involvement of nigrostriatal loop in idiopathic Parkinson's disease and striatonigral degeneration. Ann Neurol 26:766–770

    CAS  PubMed  Google Scholar 

  28. Goto S, Matsumoto S, Ushio Y, Hirano A (1996) Subregional loss of putaminal efferents to the basal ganglia output nuclei may cause parkinsonism in striatonigral degeneration. Neurology 47:1032–1036

    CAS  PubMed  Google Scholar 

  29. Guyot MC, Hantraye P, Dolan R, Palfi S, Maziere M, Brouillet E (1997) Quantifiable bradykinesia, gait abnormalities and Huntington's disease-like striatal lesions in rats chronically treated with 3-nitropropionic acid. Neuroscience 79:45–56

    Article  CAS  PubMed  Google Scholar 

  30. Hastings TG, Lewis DA, Zigmond MJ (1996) Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections. Proc Natl Acad Sci USA 93:1956–1961

    Article  CAS  PubMed  Google Scholar 

  31. Hattori A, Luo Y, Umegaki H, Munoz J, Roth GS (1998) Intrastriatal injection of dopamine results in DNA damage and apoptosis in rats. Neuroreport 9:2569–2572

    CAS  PubMed  Google Scholar 

  32. Heikkila RE, Hess A, Duvoisin RC (1984) Dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. Science 224:1451–1453

    CAS  PubMed  Google Scholar 

  33. Hida H, Fukuda A, Fujimoto I, Shimano Y, Nakajima K, Nishino H (1997) Dopamine-denervation enhances the trophic activity in striatum: evaluation by morphological and electrophysiological development in PC12D cells. Neurosci Res 28:209–221

    Article  CAS  PubMed  Google Scholar 

  34. Isacson O, Fischer W, Wictorin K, Dawbarn D, Bjorklund A (1987) Astroglial response in the excitotoxically lesioned neostriatum and its projection areas in the rat. Neuroscience 20:1043–1056

    Article  CAS  PubMed  Google Scholar 

  35. Ito H, Kusaka H, Matsumoto S, Imai T (1996) Striatal efferent involvement and its correlation to levodopa efficacy in patients with multiple system atrophy. Neurology 47:1291–1299

    CAS  PubMed  Google Scholar 

  36. Jackson-Lewis V, Jakowec M, Burke RE, Przedborski S (1995) Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration 4:257–269

    CAS  PubMed  Google Scholar 

  37. Jakel RJ, Maragos WF (2000) Neuronal cell death in Huntington's disease: a potential role for dopamine. Trends Neurosci 23:239–245

    Article  CAS  PubMed  Google Scholar 

  38. Kahle PJ, Neumann M, Ozmen L, Müller V, Jacobsen H, Spooren W, Fuss B, Mallon B, Macklin WB, Fujivwara H, Hasegawa M, Iwatsubo T, Kretzschmar HA, Haass C (2002) Hyperphosphorylation and insolubility of α-synuclein in transgenic mouse oligodendrocytes. EMBO Rep 3:583–588

    Article  CAS  PubMed  Google Scholar 

  39. Kerkerian L, Dusticier N, Nieoullon A (1987) Modulatory effect of dopamine on high-affinity glutamate uptake in the rat striatum. J Neurochem 48:1301–1306

    CAS  PubMed  Google Scholar 

  40. Kopp C, Vogel E, Rettori MC, Delagrange P, Guardiola-Lemaitre B, Misslin R (1998) Effects of a daylight cycle reversal on locomotor activity in several inbred strains of mice. Physiol Behav 63:577–585

    Article  CAS  PubMed  Google Scholar 

  41. Koutouzis TK, Borlongan CV, Scorcia T, Creese I, Cahill DW, Freeman TB, Sanberg PR (1994) Systemic 3-nitropropionic acid: long-term effects on locomotor behavior Brain Res 646:242–246

  42. Kume A, Takahashi A, Hashizume Y (1993) Neuronal cell loss of the striatonigral system in multiple system atrophy. J Neurol Sci 177:33–40

    Article  Google Scholar 

  43. Langan TJ, Plunkett RJ, Asada H, Kelly K, Kaseloo P (1995) Long-term production of neurotrophic factors by astrocyte cultures from hemiparkinsonian rat brain Glia. 14:174–184

  44. Maragos WF, Jakel RJ, Pang Z, Geddes JW (1998) 6-Hydroxydopamine injections into the nigrostriatal pathway attenuate striatal malonate and 3-nitropropionic acid lesions. Exp Neurol 154:637–644

    Article  CAS  PubMed  Google Scholar 

  45. McLaughlin BA, Nelson D, Erecinska M, Chesselet MF (1998) Toxicity of dopamine to striatal neurons in vitro and potentiation of cell death by a mitochondrial inhibitor. J Neurochem 70:2406–2415

    CAS  PubMed  Google Scholar 

  46. Meldrum A, Dunnett SB, Everitt BJ (2001) Role of corticostriatal and nigrostriatal inputs in malonate-induced striatal toxicity. Neuroreport 12:89–93

    CAS  PubMed  Google Scholar 

  47. Mitsumoto Y, Watanabe A, Mori A, Kogan N (1998) Spontaneous regeneration of nigrostriatal dopaminergic neurons in MPTP-treated C57BL/6 mice. Biochem Biophys Res Commun 248:660–663

    Article  CAS  PubMed  Google Scholar 

  48. Nakao N, Brundin P (1997) Effects of alpha-phenyl-tert-butyl nitrone on neuronal survival and motor function following intrastriatal injections of quinolinate or 3-nitropropionic acid. Neuroscience 76:749–761

    Article  CAS  PubMed  Google Scholar 

  49. Numan S, Seroogy KB (1997) Increased expression of trkB mRNA in rat caudate-putamen following 6-OHDA lesions of the nigrostriatal pathway. Eur J Neurosci 9:489–495

    CAS  PubMed  Google Scholar 

  50. Quinn NP, Marsden CD (1993) The motor disorder of multiple system atrophy. J Neurol Neurosurg Psychiatry 56:1239–1242

    CAS  PubMed  Google Scholar 

  51. Reynolds DS, Carter RJ, Morton AJ (1998) Dopamine modulates the susceptibility of striatal neurons to 3-nitropropionic acid in the rat model of Huntington's disease. J Neurosci 18:10116–10127

    CAS  PubMed  Google Scholar 

  52. Riepe MW, Ludolph AC (1997) Chemical preconditioning: a cytoprotective strategy. Mol Cell Biochem 174:249–254

    Article  CAS  PubMed  Google Scholar 

  53. Riepe MW, Niemi WN, Megow D, Ludolph AC, Carpenter DO (1996) Mitochondrial oxidation in rat hippocampus can be preconditioned by selective chemical inhibition of succinic dehydrogenase. Exp Neurol 138:15–21

    Article  CAS  PubMed  Google Scholar 

  54. Riepe MW, Esclaire F, Kasischke K, Schreiber S, Nakase H, Kempski O, Ludolph AC, Dirnagl U, Hugon J (1997) Increased hypoxic tolerance by chemical inhibition of oxidative phosphorylation: "chemical preconditioning". J Cereb Blood Flow Metab 17:257–264

    PubMed  Google Scholar 

  55. Rozas G, Lopez-Martin E, Guerra MJ, Labandeira-Garcia JL (1998) The overall rod performance test in the MPTP-treated-mouse model of Parkinsonism. J Neurosci Methods 83:165–175

    CAS  PubMed  Google Scholar 

  56. Scherfler C, Puschban Z, Ghorayeb I, Goebel GP, Weiler B, Tison F, Jellinger K, Poewe W, Wenning GK (2000) Complex motor disturbances in a sequential double lesion rat model of striatonigral degeneration (multiple system atrophy). Neuroscience 99:43–54

    Article  CAS  PubMed  Google Scholar 

  57. Shear DA, Dong J, Gundy CD, Haik-Creguer KL, Dunbar GL (1998) Comparison of intrastriatal injections of quinolinic acid and 3-nitropropionic acid for use in animal models of Huntington's disease. Prog Neuro-Psychopharmacol Biol Psychiatry 22:1217–1240

  58. Smeyne M, Goloubeva O, Smeyne RJ (2001) Strain-dependent susceptibility to MPTP and MPP+-induced Parkinsonism is determined by glia. Glia 34:73–80

    Article  CAS  PubMed  Google Scholar 

  59. Sonsalla PK, Heikkila RE (1986) The influence of dose and dosing intervals on MPTP-induced dopaminergic neurotoxicity in mice. Eur J Pharmacol 129:339–345

    Article  CAS  PubMed  Google Scholar 

  60. Tang YP, Ma YL, Chao CC, Chen KY, Lee EH (1998) Enhanced glial cell line-derived neurotrophic factor mRNA expression upon (-)-deprenyl and melatonin treatments. J Neurosci Res 53:593–604

    Article  CAS  PubMed  Google Scholar 

  61. Tanji H, Araki T, Nagasawa H, Itoyama Y (1999) Differential vulnerability of dopamine receptors in the mouse brain treated with MPTP. Brain Res 824:224–231

    Article  CAS  PubMed  Google Scholar 

  62. Tarazi FI, Baldessarini RJ (1999) Regional localization of dopamine and ionotropic glutamate receptor subtypes in striatolimbic brain regions. J Neurosci Res 55:401–410

    Article  CAS  PubMed  Google Scholar 

  63. Tison F, Wenning GK, Daniel SE, Quinn NP (1995) The pathophysiology of parkinsonism in multiple system atrophy. Eur J Neurol 2:435–444

    Google Scholar 

  64. Topper R, Gehrmann J, Schwarz M, Block F, Noth J, Kreutzberg GW (1993) Remote microglial activation in the quinolinic acid model of Huntington's disease. Exp Neurol 123:271–283

    Article  CAS  PubMed  Google Scholar 

  65. Trojanowski JQ, Lee VM (1999) Transgenic models of tauopathies and synucleinopathies. Brain Pathol 9:733–739

    CAS  PubMed  Google Scholar 

  66. Venero JL, Romero-Ramos M, Revuleta M, Machado A, Cano J (1995) Intrastriatal quinolinic acid injections protect against 6-hydroxydopamine-induced lesions of the dopaminergic nigrostriatal system. Brain Res 672:153–158

    Article  CAS  PubMed  Google Scholar 

  67. Venero JL, Vizuete ML, Revuelta M, Vargas C, Cano J, Machado A (2000) Upregulation of BDNF mRNA and trkB mRNA in the nigrostriatal system and in the lesion site following unilateral transection of the medial forebrain bundle. Exp Neurol 161:38–48

    Article  CAS  PubMed  Google Scholar 

  68. Waldner R, Puschban Z, Scherfler C, Jellinger K, Poewe W, Wenning GK (2001) No functional effects of embryonic neuronal grafts on motor deficits in a 3-nitropropionic acid rat model of advanced striatonigral degeneration (multiple system atrophy). Neuroscience 102:581–592

    Article  CAS  PubMed  Google Scholar 

  69. Wenning GK, Seppi K, Tison F, Jellinger K (2002) A novel grading scale for striatonigral degeneration (multiple system atrophy). J Neural Transm 109:307–320

    Article  CAS  PubMed  Google Scholar 

  70. **a XG, Schmidt N, Teismann P, Ferger B, Schulz JB (2001) Dopamine mediates striatal malonate toxicity via dopamine transporter-dependent generation of reactive oxygen species and D2 but not D1 receptor activation. J Neurochem 79:63–70

    Article  CAS  PubMed  Google Scholar 

  71. Zhou J, Pliego-Rivero B, Bradford HF, Stern GM (1996) The BDNF content of postnatal and adult rat brain: the effects of 6-hydroxydopamine lesions in adult brain. Dev Brain Res 97:297–303

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Harald Granbichler for his excellent technical assistance. This study was supported by the Austrian Science Foundation (FWF) grant P 14633-PHA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor K. Wenning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefanova, N., Puschban, Z., Fernagut, PO. et al. Neuropathological and behavioral changes induced by various treatment paradigms with MPTP and 3-nitropropionic acid in mice: towards a model of striatonigral degeneration (multiple system atrophy). Acta Neuropathol 106, 157–166 (2003). https://doi.org/10.1007/s00401-003-0717-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-003-0717-y

Keywords

Navigation