Log in

Viscoelastic properties of phosphoric and oxalic acid-based chitosan hydrogels

  • Original contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

In a previous work, we have shown that chitosan true physical gelation occurs in some organic and inorganic acids (Hamdine et al. 2004). Two systems presenting similar gelation mechanisms were characterized furthermore in order to investigate the sol–gel transition: the chitosan–phosphoric acid and the chitosan–oxalic acid systems. By performing rheological measurements in the framework of linear viscoelasticity, we have investigated the effect of time, temperature, and polymer concentration on the gelation evolution. For both acid-based systems, gelation occurred above a critical polymer concentration around 5% w/v (g/100 ml) of chitosan. Isothermal time sweep experiments showed that the gelation occurs in three stages: (i) incubation; (ii) rapid increase of G′; and (iii) a last stage where G′ slowly reached its equilibrium value due to slow molecular diffusion. At the gel point, G′ and G′′ scaled with ωn, with n=0.55 for both acid-based systems and a fractal dimension d f of 1.9. Cooling–heating cycles revealed that the gels showed thermoreversibility after one sequence, but became permanent during subsequent cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adolf D, Martin JE (1990) Time-cure superposition during cross-linking. Macromolecules 23:3700–3704

    Article  CAS  Google Scholar 

  • Bromberg L (1998) Scaling of rheological properties of hydrogels from associating polymers. Macromolecules 31:6148–6156

    Article  CAS  Google Scholar 

  • Chambon F, Winter HH (1987) Linear viscoelasticity at the gel point of crosslinking PDMS with unbalanced stoichiometry. J Rheol 31(8):683–697

    Article  CAS  Google Scholar 

  • Chen RH, Lin WC, Lin JH (1994) Effect of pH, ionic strength, and type of anion on the rheological properties of chitosan solutions. Acta Polym 45:41–46

    Article  CAS  Google Scholar 

  • Cho J, Heuzey MC, Begin A, Carreau, PJ (in revision) Effect of urea on solution behavior and heat-induced gelation of chitosan-β-glycerophosphate. Carbohydr Polym

  • Clark AH, Ross-Murphy SB (1987) Structural and mechanical properties of biopolymer gels. Adv Polym Sci 83:57–184

    CAS  Google Scholar 

  • Cuvelier R, Peigney-Noury C, Launay B (1989) Viscoelastic properties of physical gels: critical behaviour at the gel point. Gums Stabilizers Food Ind 5:549–552

    Google Scholar 

  • Desbrieres J, Martinez C, Rinaudo M (1996). Hydrophobic derivatives of chitosan: characterization and rheological behaviour. Int J Biol Macromol 19(1):21–28

    Article  PubMed  CAS  Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  • Francis FJ (2000) Food science and technology, vol 1. Wiley, New York, 581pp

  • Goldbart P, Goldenfeld N (1992) Dynamic scaling and spontaneous symmetry breaking at the gel point. Phys Rev A 45:R5343

    Article  PubMed  Google Scholar 

  • Gross P, Konrad E, Mager H (1982) Chitin and chitosan. Proceedings of the Second International Conference on Chitin and Chitosan, pp 205–209

  • Guo L, Colby RH, Lusignan CP, Howe AM (2003) Physical gelation of gelatin studied with rheo-optics. Macromolecules 36:10009–10020

    Article  CAS  Google Scholar 

  • Hamdine M, Bégin A, Heuzey MC (2004) Effect of organic and inorganic acids on concentrated chitosan solutions and gels. Submitted to Int J Biol Mol. In revision

  • Hayes ER, Davies DH (1978) Characterization of chitosan: I: thermoreversible chitosan gels. Proceedings of the First International Conference on Chitin/Chitosan. In: Muzzareli RAA, Parsier ER (eds) MIT sea grant program. MIT Press, Cambridge, pp 193–197

  • Hoffman H, Kästner U, Dönges R, Ehrler R (1996) Gels from modified hydroxyethyl cellulose and ionic surfactants. Polym Gels Networks 4:509–526

    Article  CAS  Google Scholar 

  • Iversen C, Kjoniksen AL, Nyström B, Nakken T, Palmgren O, Tande T (1997) Linear and nonlinear rheological responses in aqueous systems of hydrophobically modified chitosan and its unmodified analogue. Polym Bull 39:747–754

    Article  CAS  Google Scholar 

  • Jana PK, Moulik SP (1993) Interaction of amino acids and gelation with urea. Indian J Biochem Biophys 30(5):297–305

    PubMed  CAS  Google Scholar 

  • Kavanagh GM, Ross-Murphy SB (1998) Rheological characterization of polymer gels. Prog Polym Sci 23:533–562

    Article  CAS  Google Scholar 

  • Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, Oxford

    Google Scholar 

  • Li L (2002) Thermal gelation of methylcellulose in water: scaling and thermoreversibility. Macromolecules 35:5990–5998

    Article  CAS  Google Scholar 

  • Lide DR (2000–2001) CRC-handbook of chemistry and physics, 81st edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Macosko CW, Miller DR (1976) A new derivation of average molecular weights of nonlinear polymers. Macromolecules 9(2):199–206

    Article  PubMed  CAS  Google Scholar 

  • Martin JE, Adolf D, Wilcoxon JP (1988) Viscoelasticity near critical gels. Phys Rev Lett 61:2620–2623

    Article  PubMed  CAS  Google Scholar 

  • McGrane SJ, Mainwaring DE, Cornell HJ, Rix CJ (2004) The role of hydrogen bonding in amylase gelation. Starch/Stärk 56:122–131

    Article  CAS  Google Scholar 

  • Mitchell JR, Ledward DA (1996) Functional properties of food macromolecules. Elsevier, New York

    Google Scholar 

  • Miyoshi E, Takaya T, Nishinari K (1994) Gel–sol transition in gellan gum solutions. I. Rheological studies on the effects of salts. Food Hydrocolloids 8(6):505–527

    Article  CAS  Google Scholar 

  • Miyoshi E, Takaya T, Nishinari K (1995) Gel–sol transition gellan aqueous solutions. Macromol Symp 99:83–91

    CAS  Google Scholar 

  • Muthukumar M (1989) Screening effect on viscoelasticity near the gel point. Macromolecules 22(12):4656–4658

    Article  CAS  Google Scholar 

  • Nyström B, Kjoniksen AL, Iversen C (1999) Characterization of association phenomena in aqueous systems of chitosan of different hydrophobicity. Adv Colloid Interf Sci 79:81–103

    Article  Google Scholar 

  • Philippova OE, Volkov EV, Sitnikova NL, Khokhlov A, Desbrières J, Rinaudo M (2001) Two types of hydrophobic aggregates in aqueous solution of chitosan and its hydrophobic derivative. Biomacromolecules 2:483–490

    Article  PubMed  CAS  Google Scholar 

  • Prochazkova S, Vårum KM, óstgaard K (1999) Quantitative determination of chitosans by ninhydrin. Carbohydr Polym 38:115–122

    Article  CAS  Google Scholar 

  • Rha CK, Rodrigez-Sanchez D, Kienzle-Sterzer C (1982) Novel applications of chitosan. In: Colwell RR, Pariser ER, Sinskey AJ (eds) Biotechnology of Marine Polysaccharides. McGraw Hill, New York, pp 283–311

    Google Scholar 

  • Roberts GAE (1992) Chitin chemistry. Macmillan, London

    Google Scholar 

  • Roths T, Marth M, Weese J, Honerkamp J (2001) A generalized regularization method for nonlinear ill-posed problems enhanced for nonlinear regularization terms. Comput Phys Commun 139:279–296

    Article  CAS  Google Scholar 

  • Segel IH (1976) Biochemical calculation. Wiley, New York

    Google Scholar 

  • Tokita M, Hikichi K (1987) Mechanical studies of sol–gel transition: universal behavior of elastic modulus. Am Phys Soc 35:4329–4333

    CAS  Google Scholar 

  • Tosh SM, Marangoni AG, Hallet FR, Britt IJ (2003) Aging dynamics in gelatin gel microstructure. Food Hydrocolloids 17:503–513

    Article  CAS  Google Scholar 

  • Vachoud L, Zydowicz N, Domard A (2000) Physicochemical behaviour of chitin gels. Carbohydr Res 326(4):295–304

    Article  PubMed  CAS  Google Scholar 

  • Vincendon M (1986) NMR conformational analysis of chitin in lithium chloride solution. In: Muzzarelli RRA, Jeuniaux C, Gooday GW (eds) Chitin in Nature and Technology. Plenum, New York, pp 343–345

    Google Scholar 

  • Watase M, Nishinari K (1993) Effect of potassium on the rheological and thermal properties of gellan gum gels. Food Hydrocolloids 7(5):449–456

    CAS  Google Scholar 

  • Whistler RL (1993) Chitin, Chap 22. In: Whistler RL, BeMiller JN (eds) Industrial gums. Academic Press, New York, pp 601–604

  • Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30(2):367–382

    Article  CAS  Google Scholar 

  • Winter HH, Mours M (1997) Rheology of polymers near liquid-solid transitions. Adv Polym Sci 134:165–234

    Article  CAS  Google Scholar 

  • Winterowd JG, Sandford PA (1995) Chitin and chitosan, Chap 13. In: Stephen AM (ed) Food polysaccharides and their applications. Marcel Dekker, New York, pp 441–462

  • Yamaguchi R, Hirano, S, Arai Y, Ito T (1978) Chitosan salts gels. Thermally reversible gelation of chitosan. Agric Biol Chem 42:1981–1982

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of Conseil de Recherches en Pêche et en Agroalimentaire du Québec (CORPAQ). They would also like to thank Karine Gerdaoui for providing the chitosan–oxalic acid kinetics data. Finally, the comments from the reviewers and the editor were greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Claude Heuzey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamdine, M., Heuzey, MC. & Bégin, A. Viscoelastic properties of phosphoric and oxalic acid-based chitosan hydrogels. Rheol Acta 45, 659–675 (2006). https://doi.org/10.1007/s00397-005-0024-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-005-0024-8

Keywords

Navigation