Log in

Synthesis, characterization, and property testing of PGS/P(AMPS-co-AM) superabsorbent hydrogel initiated by glow-discharge electrolysis plasma

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A palygorskite/poly(2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylamide) (PGS/P(AMPS-co-AM)) superabsorbent hydrogel was prepared in aqueous solution using glow-discharge electrolysis plasma (GDEP) as an initiator and N,N′-methylene-bis-acrylamide as a cross-linker. A possible copolymerization mechanism initiated by GDEP was proposed. The structure, thermal stability, and morphology of PGS/P(AMPS-co-AM) were characterized by FT-IR, XRD, TG-DTG, and SEM. The swelling kinetics, pH-reversibility, and influence of various pH and salt solutions on the swelling were investigated. Adsorption kinetics and adsorption mechanism of hydrogel for dyes were studied in detail. The results indicated that the equilibrium swelling of hydrogel is 652.6 g g−1 in distilled water. The swelling of the hydrogel in salt solutions from highest to lowest is Na+ > Mg2+ > Fe3+. The hydrogel has pH-reversibility responsive to the pH and salts solutions. The adsorption process of dyes follows the pseudo-second-order kinetic model with multi-step diffusion process. In addition, PGS/P(AMPS-co-AM) hydrogel can be regenerated and reused.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zheng Y, Gao TP, Wang AQ (2008) Preparation, swelling, and slow-release characteristics of superabsorbent composite containing sodium humate. Ind Eng Chem Res 47:1766–1773

    Article  CAS  Google Scholar 

  2. Massoud A, Waly SA (2014) Preparation and characterization of poly (acrylic acid-dimethylaminoethylmethacrylate) as amphoteric exchange resin and its adsorption properties. Colloid Polym Sci 292:3077–3083

    Article  CAS  Google Scholar 

  3. Appel EA, del Barrio J, Loh XJ, Scherman OA (2012) Supramolecular polymeric hydrogels. Chem Soc Rev 41:6195–6214

    Article  CAS  Google Scholar 

  4. Li SF, Zhang H, Feng JT, Xu R, Liu XL (2011) Facile preparation of poly(acrylic acid-acrylamide) hydrogels by frontal polymerization and their use in removal of cationic dyes from aqueous solution. Desalination 280:95–102

    Article  CAS  Google Scholar 

  5. Ismail LFM, Maziad NA, Abo-Farha SA (2005) Factors affecting the adsorption of cationic dyes on polymeric hydrogels prepared by gamma irradiation. Polym Int 54:58–64

    Article  CAS  Google Scholar 

  6. Yu J, Yang GG, Li Y, Yang W, Gao JZ, Lu QF (2013) Synthesis, characterization, and swelling behaviors of acrylic acid/carboxymethyl cellulose superabsorbent hydrogel by glow-discharge electrolysis plasma. Polym Eng Sci 54:2310–2320

    Article  Google Scholar 

  7. Kabiri K, Zohuriaan-Mehr MJ (2004) Porous superabsorbent hydrogel composites: synthesis, morphology and swelling rate. Macromol Mater Eng 289:653–661

    Article  CAS  Google Scholar 

  8. Zhang JP, Chen H, Wang AQ (2006) Study on superabsorbent composite. IV. Effects of organification degree of attapulgite on swelling behaviors of polyacrylamide/organo-attapulgite composites. Eur Polym J 42:101–108

    Article  CAS  Google Scholar 

  9. Liu Y, Zheng Y, Wang AQ (2010) Enhanced adsorption of methylene blue from aqueous solution by chitosan-g-poly(acrylic acid)/vermiculite hydrogel composites. J Environ Sci-China 22:486–493

    Article  CAS  Google Scholar 

  10. Wu J, Lin J, Zhou M, Wei C (2000) Synthesis and properties of starch-graft-polyacrylamide/clay superabsorbent composite. Macromol Rapid Commun 21:1032–1034

    Article  CAS  Google Scholar 

  11. Şen M, Hayrabolulu H (2012) Radiation synthesis and characterisation of the network structure of natural/synthetic double-network superabsorbent polymers. Radiat Phys Chem 81:1378–1382

    Article  Google Scholar 

  12. Sawut A, Yimit M, Sun W, Nurulla I (2014) Photopolymerisation and characterization of maleylatedcellulose-g-poly(acrylic acid) superabsorbent polymer. Carbohyd Polym 101:231–239

    Article  CAS  Google Scholar 

  13. Gao JZ, Wang AX, Li Y, Fu Y, Wu JL, Wang YD, Wang YJ (2008) Synthesis and characterization of superabsorbent composite by using glow discharge electrolysis plasma. React Funct Polym 68:1377–1383

    Article  CAS  Google Scholar 

  14. Gao JZ, Ma DL, Lu QF, Li Y, Li XF, Yang W (2010) Synthesis and characterization of montmorillonite-graft-acrylic acid superabsorbent by using glow-discharge electrolysis plasma. Plasma Chem Plasma Process 30:873–883

    Article  CAS  Google Scholar 

  15. Wang XY, Zhou MH, ** XL (2012) Application of glow discharge plasma for wastewater treatment. Electrochim Acta 83:501–512

    Article  CAS  Google Scholar 

  16. Harada K, Iwasaki T (1977) Syntheses of amino acids from aliphatic carboxylic acid by glow discharge electrolysis. Nature 250:426–428

    Article  Google Scholar 

  17. Harada K, Suzuki S (1977) Formation of amino acids from elemental carbon by glow discharge electrolysis. Nature 266:275–276

    Article  CAS  Google Scholar 

  18. Malik MA, Ghaffar A, Malik SA (2001) Water purification by electrical discharges. Plasma Sources Sci Technol 10:82–91

    Article  CAS  Google Scholar 

  19. Tezuka M, Iwasaki M (1998) Plasma induced degradation of chlorophenols in an aqueous solution. Thin Solid Films 316:123–127

    Article  CAS  Google Scholar 

  20. Lu QF, Yu J, Gao JZ (2006) Degradation of 2,4-dichlorophenol by using glow discharge electrolysis. J Hazard Mater 136:526–531

    Article  CAS  Google Scholar 

  21. Friedrich JF, Mix R, Schulze RD (2008) New plasma techniques for polymer surface modification with monotype functional groups. Plasma Process Polym 5:407–423

    Article  CAS  Google Scholar 

  22. Djowe AT, Laminsi S, Njopwouo D, Acayanka E, Gaigneaux EM (2013) Surface modification of smectite clay induced by nonthermal gliding arc plasma at atmospheric pressure. Plasma Chem Plasma Process 33:707–723

    Article  CAS  Google Scholar 

  23. Lu QF, Yu J, Gao JZ, Yang W, Li Y (2011) Glow-discharge electrolysis plasma induced synthesis of polyvinylpyrrolidone/acrylic acid hydrogel and its adsorption properties for heavy-metal ions. Plasma Process Polym 8:803–814

    Article  CAS  Google Scholar 

  24. Yu J, Pan YP, Lu QF, Yang W, Gao JZ, Li Y (2013) Synthesis and swelling behaviors of P(AMPS-co-AAc) superabsorbent hydrogel produced by glow-discharge electrolysis plasma. Plasma Chem Plasma Process 33:219–235

    Article  CAS  Google Scholar 

  25. Neaman A, Singer A (2004) Possible use of the Sacalum (Yucatan) palygorskite as drilling muds. Appl Clay Sci 25:121–124

    Article  CAS  Google Scholar 

  26. Yadav M, Rhee KY (2012) Superabsorbent nanocomposite (alginate-g-PAMPS/MMT): synthesis, characterization and swelling behavior. Carbohyd Polym 90:165–173

    Article  CAS  Google Scholar 

  27. Abd El-Mohdy HL (2013) Radiation initiated synthesis of 2-acrylamidoglycolic acid grafted carboxymethyl cellulose as pH-sensitive hydrogel. Polymer Engineering Science 54:2753–2761

    Article  Google Scholar 

  28. Joshi AA, Locke BR, Arce P, Finney WC (1995) Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution. J Hazard Mater 41:3–30

    Article  CAS  Google Scholar 

  29. Hickling A, Ingram MD (1964) Glow-discharge electrolysis. J Electroanal Chem 8:65–81

    CAS  Google Scholar 

  30. Sengupta SK, Singh R, Srivastva AK (1998) A study on the nonfaradaic yields of anodic contact glow discharge electrolysis using cerous ion as the scavenger: an estimate of the primary yield of OH radicals. Indian J Chem A 37:558–560

    Google Scholar 

  31. Sun B, Sato M, Clements JS (1997) Optical study of active species produced by a pulsed streamer corona discharge in water. J Electrost 39:189–202

    Article  CAS  Google Scholar 

  32. Brisset JL, Moussa D, Doubla A, Hnatiuc E, Hnatiuc B, Youbi GK, Herry JM, Naïtali M, Bellon-Fontaine MN (2008) Chemical reactivity of discharges and temporal post-discharges in plasma treatment of aqueous media: examples of gliding discharge treated solutions. Ind Eng Chem Res 47:5761–5781

    Article  CAS  Google Scholar 

  33. Malik MA, Ahmed M, Rehman E, Naheed R, Ghaffar A (2003) Synthesis of superabsorbent copolymers by pulsed corona discharges in water. Plasmas Polym 8:271–279

    Article  CAS  Google Scholar 

  34. Chisholm JE (1992) Powder diffraction patterns and structural models for palygorskite. Can Mineral 30:61–73

    CAS  Google Scholar 

  35. Lei XP, Liu YS, Su ZX (2008) Synthesis and characterization of organo-attapulgite/polyaniline-dodecylbenzenesulfonic acid based on emulsion polymerization method. Polym Compos 29:239–244

    Article  CAS  Google Scholar 

  36. Zhang JP, Wang Q, Wang AQ (2007) Synthesis and characterization of chitosan-g-poly(acrylic acid)/attapulgite superabsorbent composites. Carbohyd Polym 68:367–374

    Article  CAS  Google Scholar 

  37. Limparyoon N, Seetapan N, Kiatkamjornwong S (2011) Acrylamide/2-acrylamido-2-methylpropane sulfonic acid and associated sodium salt superabsorbent copolymer nanocomposites with mica as fire retardants. Polym Degrad Stabil 96:1054–1063

    Article  CAS  Google Scholar 

  38. Bao Y, Ma JZ, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohyd Polym 84:76–82

    Article  CAS  Google Scholar 

  39. Peng ZQ, Chen DJ (2006) Alignment effect of attapulgite on the mechanical properties of poly(vinyl alcohol)/attapulgite nanocomposite fibers. J Polym Sci B Polym Phys 44:1995–2000

    Article  CAS  Google Scholar 

  40. Li A, Wang AQ (2005) Synthesis and properties of clay-based superabsorbent composite. Eur Polym J 41:1630–1637

    Article  CAS  Google Scholar 

  41. Karadag E, Uzum OB, Saraydin D (2005) Water uptake in chemically crosslinked poly(acrylamide-co-crotonic acid) hydrogels. Mater Des 26:265–270

    Article  CAS  Google Scholar 

  42. Spagnol C, Rodrigues FHA, Pereira AGB, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly(acrylic acid). Carbohyd Polym 87:2038–2045

    Article  CAS  Google Scholar 

  43. Pourjavadi A, Barzegar S, Zeidabadi F (2007) Synthesis and properties of biodegradable hydrogels of κ-carrageenan grafted acrylic acid-co-2-acrylamido-2-methylpropanesulfonic acid as candidates for drug delivery systems. React Funct Polym 67:644–654

    Article  CAS  Google Scholar 

  44. Spagnol C, Rodrigues FHA, Neto AGVC, Pereira AGB, Fajardo AR, Radovanovic E, Rubira AF, Muniz EC (2012) Nanocomposites based on poly(acrylamide-co-acrylate) and cellulose nanowhiskers. Eur Polym J 48:454–463

    Article  CAS  Google Scholar 

  45. Lu QF, Yu J, Gao JZ, Yang W, Li Y (2012) A promising absorbent of acrylic acid/poly(ethylene glycol) hydrogel prepared by glow-discharge electrolysis plasma. Cent Eur J Chem 10:1349–1359

    Article  CAS  Google Scholar 

  46. Vimonses V, Lei SM, ** B, Chow CWK, Saint C (2009) Kinetic study and equilibrium isotherm analysis of Congo red adsorption by clay materials. Chem Eng J 148:354–364

    Article  CAS  Google Scholar 

  47. Lorenc-Grabowska E, Gryglewicz G (2007) Adsorption characteristics of Congo red on coal-based mesoporous activated carbon. Dyes Pigments 74:34–40

    Article  CAS  Google Scholar 

  48. Barkakati P, Begum A, Das ML, Rao PG (2010) Adsorptive separation of ginsenoside from aqueous solution by polymeric resins: equilibrium, kinetic and thermodynamic studies. Chem Eng J 161:34–45

    Article  CAS  Google Scholar 

  49. Crini G (2008) Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer. Dyes Pigments 77:415–426

    Article  CAS  Google Scholar 

  50. Yu J, Yang GG, Pan YP, Lu QF, Yang W, Gao JZ (2014) Poly (acrylamide-co-acrylic acid) hydrogel induced by glow-discharge electrolysis plasma and its adsorption properties for cationic dyes. Plasma Sci Technol 16:767–776

    Article  CAS  Google Scholar 

  51. Reddy DHK, Lee SM (2013) Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv Colloid Interf Sci 201-202:68–93

    Article  CAS  Google Scholar 

  52. Crini G, Peindy HN, Gimbert F, Robert C (2007) Removal of C.I. Basic green 4 (malachite green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies. Sep Purifi Technol 53:97–110

    Article  CAS  Google Scholar 

  53. Wong YC, Szeto YS, Cheung WH, McKay G (2004) Adsorption of acid dyes on chitosan-equilibrium isotherm analyses. Process Biochem 39:693–702

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Natural Science Foundation of China (no. 21367023), Natural Science Foundation of Gansu Province (nos. 1308RJZA144 and 1208RJZA161), Scientific Research Project in Higher Education Institutions of Gansu Province (no. 2013-019), and Key Project of Young Teachers’ Scientific Research Promotion of Northwest Normal University (no. NWNU-LKQN-12-9), China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Yu or Quanfang Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Zhang, H., Li, Y. et al. Synthesis, characterization, and property testing of PGS/P(AMPS-co-AM) superabsorbent hydrogel initiated by glow-discharge electrolysis plasma. Colloid Polym Sci 294, 257–270 (2016). https://doi.org/10.1007/s00396-015-3751-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3751-0

Keywords

Navigation