Log in

An improved vegetation emissivity scheme for land surface modeling and its impact on snow cover simulations

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study developed an improved vegetation emissivity scheme for the Community Land Model (CLM) version 4.5 to more accurately simulate the effects of vegetation emissivity on snow processes in the Northern Hemisphere over winter and spring. The original scheme of vegetation emissivity in CLM produced an unreasonably low vegetation emissivity with a minimum value of around 0.70 in the cold season. Thus, we developed a new vegetation emissivity scheme based on maximum emissivity and leaf and stem area indices of vegetation, which can simulate vegetation emissivity more realistically than the original scheme. Our simulations were driven by the Climatic Research Unit-National Centers for Environmental Prediction (CRU-NCEP) reanalysis data. Results show that CLM with the new scheme produces stronger longwave radiation to the ground surface and generates more solid water drips off vegetation over winter and spring than with the original scheme. Such changes improve snow cover fraction (SCF) simulations for the middle and high latitudes in North America, central Eurasia, and the eastern Tibetan Plateau. About 200 and 350 thousand km2 with the SCF changes show a better SCF simulation with the new scheme over winter and spring, respectively. However, increased errors were found in SCF simulations with the new scheme, and further analysis indicates that such errors may be related to biases in the CLM forcing variables from the CRU-NCEP reanalysis data as compared with those from in situ observations. Moreover, the new emissivity scheme decreases total upward longwave radiation and increases surface net radiation and turbulent fluxes. Overall, the improved vegetation emissivity scheme in this study provides an effective tool to generate better understanding of the effects of vegetation on snow at regional scales and gives strong insight into improved land surface process modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (No. 91637209, No. 41571030, No. 91737306), and it is also partially supported by the Utah Agricultural Experiment Station. We thank Northwest Agriculture & Forestry University for providing us with high-performance computing resources. Finally, we thank two anonymous reviewers for their constructive comments and suggestions to improve the quality of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiming **.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 919 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., **, J., Liu, J. et al. An improved vegetation emissivity scheme for land surface modeling and its impact on snow cover simulations. Clim Dyn 53, 6215–6226 (2019). https://doi.org/10.1007/s00382-019-04924-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-019-04924-9

Keywords

Navigation