Log in

Reexamining the relationship of La Niña and the East Asian Winter Monsoon

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The northern and the southern modes are two distinct principle modes that dominate the winter mean surface air temperature (Ts) variations over East Asia (EA). The cold southern mode is represented by a significant cooling south of 45°N and is linked to La Niña events. An objective criterion, which could distinguish the spatial distributions and the maximum center of sea surface temperature anomaly (SSTA), is used to classify the La Niña events into two categories: mega-La Niña and equatorial La Niña. Their impacts are inspected onto the Ts southern mode. The mega-La Niña, featured by a significant K-shape warming in the western Pacific with the maximum SSTA cooling centered in the tropical central Pacific. As a response, an anomalous barotropic high is generated over North Pacific (NP) implying a weak zonal gradient between ocean and the EA continent, which induces a neutral Ts southern mode. The equatorial La Niña characterizes a significant cooling in the tropical eastern Pacific with convective descending motions shifting eastward to the east of the dateline. The resultant low-level circulation anomalies show an anomalous subtropical NP low and a gigantic abnormal EA continent high. The strong zonal gradient results in significant northerly anomalies over EA from 55°N to southeastern China. Over the mid-upper troposphere, the anomalous subtropical NP low extends westward to the Korean Peninsula, leading to a strengthened and southward shifted EA trough. Such abnormal circulation patterns favor the intrusion of cold air to southern EA and correspond to a strong Ts southern mode. The numerical results well validate the above processes and physical mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alexander MA, Bladé I, Newman M, Lanzante JR, Lau NC, Scott JD (2002) The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J Clim 15:2205–2231

    Article  Google Scholar 

  • Alexander MA, Lau NC, Scott JD (2004) Broadening the atmospheric bridge paradigm: ENSO teleconnections to the tropical West Pacific–Indian Oceans over the seasonal cycle and to the North Pacific in summer. In: Wang C, **e SP, Carton J (eds) Earth’s climate: the ocean–atmosphere interaction. AGU monograph, vol 147. American Geophysical Union, Washington, DC, pp 85–104. https://doi.org/10.1029/147GM05

    Google Scholar 

  • Capotondi A, Wittenberg AT, Newman M, Di Lorenzo E, Yu JY et al (2015) Understanding ENSO diversity. Bull Am Meteorol Soc 96(6):921–938

    Article  Google Scholar 

  • Chen W (2002) Impacts of El Niño and La Niña on the cycle of the East Asian winter and summer monsoon. Chin J Atmos Sci 26:595–610 (in Chinese)

    Google Scholar 

  • Chen W, Graf HF, Huang RH (2000) The interannual variability of East Asian winter monsoon and its relation to the summer monsoon. Adv Atmos Sci 17:48–60

    Article  Google Scholar 

  • Chen Z, Wu R, Chen W (2014) Distinguishing interannual variations of the northern and southern modes of the East Asian winter monsoon. J Clim 27:835–851

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P (2011) The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q J R Meteor Soc 137:553–597

    Article  Google Scholar 

  • Feng J, Li JP (2011) Influence of El Niño Modoki on spring rainfall over south China. J Geophys Res Atmos 116:D13102. https://doi.org/10.1029/2010JD015160

    Article  Google Scholar 

  • Gong DY, Wang SW, Zhu JH (2001) East Asian winter monsoon and Arctic oscillation. Geophys Res Lett 28:2073–2076

    Article  Google Scholar 

  • Ha KJ, Heo KY, Lee SS, Yun KS, Jhun JG (2012) Variability in the East Asian monsoon: a review. Meteo Appl 19:200–215

    Article  Google Scholar 

  • Hamed KH, Rao AR (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrometeor 204:182–196

    Google Scholar 

  • He SP, Wang HJ (2013) Oscillating Relationship between the East Asian Winter Monsoon and ENSO. J Clim 26:9819–9838

    Article  Google Scholar 

  • Hoerling MP, Kumar A, Zhong M (1997) El Niño, La Niña, and the nonlinearity of their teleconnections. J Clim 10:1769–1786

    Article  Google Scholar 

  • Horel JD, Wallace JM (1981) Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon Weather Rev 109:813–829

    Article  Google Scholar 

  • Huang B, Banzon VF, Freeman E, Lawrimore J, Liu W, Peterson TC, Smith TM, Thorne PW, Woodruff SD, Zhang HM (2014) Extended reconstructed sea surface temperature version 4 (ERSST.v4): Part I. upgrades and intercomparisons. J Clim 28:911–930

    Article  Google Scholar 

  • Huang B, Thorne P, Smith T, Liu W, Lawrimore J, Banzon V, Zhang H, Peterson T, Menne M (2015) Further exploring and quantifying uncertainties for extended reconstructed sea surface temperature (ERSST) Version 4 (v4). J Clim 29:3119–3142. https://doi.org/10.1175/JCLI-D-15-0430.1

    Article  Google Scholar 

  • Jhun JG, Lee EJ (2004) A new East Asian winter monsoon index and associated characteristics of winter monsoon. J Clim 17:711–726

    Article  Google Scholar 

  • Jia X, Lin H, Ge J (2016) The interdecadal change of ENSO impact on wintertime East Asian climate. J Geophys Res 120:11918–11935. https://doi.org/10.1002/2015JD023583

    Google Scholar 

  • Kug JS, Ham YG (2011) Are there two types of La Nina? Geophys Res Lett 38:L16704. https://doi.org/10.1029/2011GL048237

    Article  Google Scholar 

  • Lau NC, Nath MJ (1990) A general circulation model study of the atmospheric response to extratropical SST anomalies observed in 1950–79. J Clim 3:965–989

    Article  Google Scholar 

  • Lau NC, Nath MJ (1996) The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J Clim 9:2036–2057

    Article  Google Scholar 

  • Liu W, Huang B, Thorne PW, Banzon VF, Zhang HM, Freeman E, Lawrimore J, Peterson TC, Smith TM, Woodruff SD (2014a) Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4): Part II. Parametric and structural uncertainty estimations. J Clim 28:931–951. https://doi.org/10.1175/JCLI-D-14-00007.1

    Article  Google Scholar 

  • Liu Y, Wang L, Zhou W, Chen W (2014b) Three Eurasian teleconnection patterns: spatial structures, temporal variability, and associated winter climate anomalies. Clim Dyns 42:2817–2839

    Article  Google Scholar 

  • Luo D, **ao Y, Yao Y et al (2016) Impact of Ural blocking on winter Warm Arctic—cold Eurasian anomalies. Part II: the link to the North Atlantic Oscillation. J Clim 29:3949–3971

    Article  Google Scholar 

  • Mondal A, Kundu S, Mukhopadhyay A (2012) Rainfall trend analysis by Mann-Kendall test: a case study of north-eastern part of Cuttack district, Orissa. Int J Geol Earth Environ Sci 2:70–78

    Google Scholar 

  • Parker D, Folland C, Scaife A, Knight J, Colman A, Baines P (2007) Decadal to multidecadal variability and the climate change background. J Geophys Res 112:1148–1154

    Google Scholar 

  • Power S, Casey T, Folland C, Colman A, Mehta V (1999) Interdecadal modulation of the impact of ENSO on Australia. Clim Dyn 15:319–324

    Article  Google Scholar 

  • Rayner NA, Parkler DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperatures since the late nineteenth century. J Geophys Res 108(D14):4407. https://doi.org/10.1029/2002JD002670

    Article  Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5: Part I: Model description. Max Planck Institute Rep. Report No. 349

  • Tao S, Zhang Q (1998) Response of the Asian winter and summer monsoon to ENSO events. Sci Atmos Sin 22:399–407 (in Chinese)

    Google Scholar 

  • Tomita T, Yasunari T (1996) Role of the northeast winter monsoon on the biennial oscillation of the ENSO/monsoon system. J Meteor Soc Japan 74:399–413

    Article  Google Scholar 

  • Uppala SM, Kållberg PW, Simmons AJ, Andrae U, Bechtold VD, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X (2005) The ERA-40 reanalysis. Q J R Meteor Soc 131:2961–3012

    Article  Google Scholar 

  • Wang HJ, He SP (2012) Weakening relationship between East Asian winter Monsoon and ENSO after mid-1970s. Chin Sci Bull 57:3535–3540

    Article  Google Scholar 

  • Wang L, Lu M (2017) The East Asian winter monsoon. In: Chang C-P (ed) The Global monsoon system: research and forecast, 3rd edn. World Scientific, Singapore, pp 51–61, https://doi.org/10.1142/9789813200913_0005

    Chapter  Google Scholar 

  • Wang B, Zhang Q (2002) Pacific–East Asian teleconnection. Part II: how the Philippine Sea anomalous anticyclone is established during El Niño development. J Clim 15:3252–3265

    Article  Google Scholar 

  • Wang B, Wu R, Fu X (2000) Pacific–East Asia teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536

    Article  Google Scholar 

  • Wang L, Chen W, Huang R (2008) Interdecadal modulation of PDO on the impact of ENSO on the East Asian winter monsoon. Geophys Res Lett 35:L20702. https://doi.org/10.1029/2008GL035287

    Article  Google Scholar 

  • Wang L, Chen W, Zhou W, Chan JC, Barriopedro D, Huang R (2010a) Effect of the climate shift around mid-1970 s on the relationship between wintertime ural blocking circulation and East Asian climate. Int J Climatol 30:153–158

    Article  Google Scholar 

  • Wang B, Wu Z, Chang C-P, Liu J, Li J, Zhou T (2010b) Another Look at interannual-to-interdecadal variations of the East Asian Winter Monsoon: the Northern and Southern temperature modes. J Clim 23:1495–1512

    Article  Google Scholar 

  • Wang B, Liu J, Kim HJ, Webster PJ, Yim SY, **ang BQ (2013) Northern Hemisphere summer monsoon intensified by mega-El Niño/southern oscillation and Atlantic multidecadal oscillation. Proc Natl Acad Sci USA 14:5347–5352

    Article  Google Scholar 

  • Wang L, Liu Y, Zhang Y, Chen W, Chen S (2018) Time-varying structure of the wintertime Eurasian pattern: role of the North Atlantic sea surface temperature and atmospheric mean flow, Clim Dyns. https://doi.org/10.1007/s00382-018-4261-9

    Google Scholar 

  • Wu B-Y, Huang RH (1999) Effects of the extremes in the North Atlantic oscillation on East Asia winter monsoon. Chin J Atmos Sci 23:641–651

    Google Scholar 

  • Wu B-Y, Wang J (2002) Winter Arctic Oscillation, Siberian High and East Asian winter monsoon. Geophys Res Lett 29:1897. https://doi.org/10.1029/2002GL015373

    Google Scholar 

  • Wu Z, Zhang P (2015) Interdecadal variability of the mega-ENSO–NAO synchronization in winter. Clim Dyn 45:1117–1128

    Article  Google Scholar 

  • Wu Z, Li J, Wang B, Liu X (2009) Can the Southern Hemisphere annular mode affect Chinese winter monsoon? J Geophys Res 114:D11107. https://doi.org/10.1029/2008JD011501

    Article  Google Scholar 

  • Zhang R, Sumi A, Kimoto M (1996) Impact of El Niño on the East Asian monsoon: a diagnostic study of the’86/87 and’91/92 events. J Meteor Soc Jpn 74:49–62

    Article  Google Scholar 

  • Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability. J Clim 10:1004–1020

    Article  Google Scholar 

  • Zhang R, Li T, Wen M, Liu L (2015a) Role of intraseasonal oscillation in asymmetric impacts of El Niño and La Niña on the rainfall over southern China in boreal winter. Clim Dyn 45:559–567

    Article  Google Scholar 

  • Zhang WJ, Wang L, **ang BQ, Qi L, He JH (2015b) Impacts of two types of La Niña on the NAO during boreal winter. Clim Dyn 44:1351–1366. https://doi.org/10.1007/s00382-014-2155-z

    Article  Google Scholar 

  • Zhang L, Wu Z, Zhou Y (2016) Different impacts of typical and atypical enso on the indian summer rainfall: ENSO-develo** phase. Atmos Ocean 54:440–456

    Article  Google Scholar 

  • Zhang P, Wu ZW, Chen H (2017) Interdecadal variability of the ENSO–North Pacific atmospheric circulation in winter. Atmos Ocean 55(2):110–120

    Article  Google Scholar 

Download references

Acknowledgements

This work is jointly supported by the National Natural Science Foundation of China (NSFC) (Grant No. 41790475), the National Key Research & Development Program of China (Grant No. 2016YFA0601801), the Ministry of Science and Technology of China (Grant Nos. 2015CB953904 and 2015CB453201) and the NSFC (Grant Nos. 91637312, 41575075 and 91437216).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Wu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Wu, Z. & Li, J. Reexamining the relationship of La Niña and the East Asian Winter Monsoon. Clim Dyn 53, 779–791 (2019). https://doi.org/10.1007/s00382-019-04613-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-019-04613-7

Navigation