Log in

Decadal prediction of Sahel rainfall: where does the skill (or lack thereof) come from?

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Previous works suggest decadal predictions of Sahel rainfall could be skillful. However, the sources of such skill are still under debate. In addition, previous results are based on short validation periods (i.e. less than 50 years). In this work we propose a framework based on multi-linear regression analysis to study the potential sources of skill for predicting Sahel trends several years ahead. We apply it to an extended decadal hindcast performed with the MPI-ESM-LR model that span from 1901 to 2010 with 1 year sampling interval. Our results show that the skill mainly depends on how well we can predict the timing of the global warming (GW), the Atlantic multidecadal variability (AMV) and, to a lesser extent, the inter-decadal Pacific oscillation signals, and on how well the system simulates the associated SST and West African rainfall response patterns. In the case of the MPI-ESM-LR decadal extended hindcast, the observed timing is well reproduced only for the GW and AMV signals. However, only the West African rainfall response to the AMV is correctly reproduced. Thus, for most of the lead times the main source of skill in the decadal hindcast of West African rainfall is from the AMV. The GW signal degrades skill because the response of West African rainfall to GW is incorrectly captured. Our results also suggest that initialized decadal predictions of West African rainfall can be further improved by better simulating the response of global SST to GW and AMV. Furthermore, our approach may be applied to understand and attribute prediction skill for other variables and regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bader J, Latif M (2003) The impact of decadal scale Indian Ocean SST anomalies on Sahelian rainfall and the North Atlantic Oscillation. Geophys Res Lett 30:2169. doi:10.1029/2003GL018426

    Article  Google Scholar 

  • Baines PG, Folland CK (2007) Evidence for a rapid global climate shift across the late 1960s. J Clim 20:2721–2744. doi:10.1175/JCLI4177.1

    Article  Google Scholar 

  • Bellucci A, Haarsma R, Gualdi S et al (2015) An assessment of a multi-model ensemble of decadal climate predictions. Clim Dyn 44:2787–2806

    Article  Google Scholar 

  • Booth BBB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484:229–232

    Article  Google Scholar 

  • Cai W, Whetton PH (2001) Modes of SST variability and the fluctuation of global mean temperature. Clim Dyn 17:889–901

    Article  Google Scholar 

  • Caminade C, Terray L (2010) Twentieth century Sahel rainfall variability as simulated by the ARPEGE AGCM, and future changes. Clim Dyn 35:75–94. doi:10.1007/s00382-009-0545-4

    Article  Google Scholar 

  • Carslaw KS, Lee LA, Reddington CL et al (2013) Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 503:67–71

    Article  Google Scholar 

  • Chen X, Tung KK (2014) Varying planetary heat sink led to global-warming slowdown and acceleration. Science 345:897–903

    Article  Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Mauger M, Mok HY, Nordli Ø, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28

    Article  Google Scholar 

  • Dai A, Trenberth KE, Qian T (2004) A global data set of Palmer Drought Severity Index for 1870–2002: relationship with soil moisture and effects of surface warming. J Hydrometeorol 5:1117–1130

    Article  Google Scholar 

  • Doblas-Reyes FJ, Andreu-Burillo I, Chikamoto Y, Garcia-Serrano J, Guemas V, Kimoto M, Mochizuki T, Rodrigues LRL, van Oldenborgh GJ (2013) Initialized near-term regional climate change prediction. Nat Commun 4:1715. doi:10.1038/ncomms2704

    Article  Google Scholar 

  • Dong B, Sutton R (2015) Dominant role of greenhouse-gas forcing in the recovery of Sahel rainfall. Nat Clim Change 5:757–760

    Article  Google Scholar 

  • England MH, Kajtar JB, Maher N (2015) Robust warming projections despite the recent hiatus. Nat Clim Change 5:394–396

    Article  Google Scholar 

  • Falvey M, Garreaud RD (2009) Regional cooling in a warming world: recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979–2006). J Geophys Res. doi:10.1029/2008JD010519

    Google Scholar 

  • Gaetani M, Mohino E (2013) Decadal prediction of the Sahelian precipitation in CMIP5 simulations. J Clim 26:7708–7719. doi:10.1175/JCLI-D-12-00635.1

    Article  Google Scholar 

  • García-Serrano J, Doblas-Reyes FJ, Haarsma RJ, Polo I (2013) Decadal prediction of the dominant West African monsoon rainfall modes. J Geophys Res Atmos 118:5260–5279. doi:10.1002/jgrd.50465

    Article  Google Scholar 

  • García-Serrano J, Guemas V, Doblas-Reyes FJ (2015) Added-value from initialization in predictions of Atlantic multi-decadal variability. Clim Dyn 44:2539–2555. doi:10.1007/s00382-014-2370-7

    Article  Google Scholar 

  • Giannini A (2010) Mechanisms of climate change in the semiarid African Sahel: the local view. J Clim 23:743–756

    Article  Google Scholar 

  • Giannini A, Saravanan R, Chang P (2003) Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science 302:1027–1030

    Article  Google Scholar 

  • Giannini A, Salack S, Lodoun T, Ali A, Gaye AT, Ndiaye O (2013) A unifying view of climate change in the Sahel linking intra-seasonal, interannual and longer time scales. Environ Res Lett 8:024010. doi:10.1088/1748-9326/8/2/024010

    Article  Google Scholar 

  • Haarsma RJ, Selten FM, Weber SL, Kliphuis M (2005) Sahel rainfall variability and response to greenhouse warming. Geophys Res Lett 32:L17702. doi:10.1029/2005GL023232

    Article  Google Scholar 

  • Hagos S, Cook K (2008) Ocean warming and late-twentieth-century Sahel drought and recovery. J Clim 21:3797–3814. doi:10.1175/2008JCLI2055.1

    Article  Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister HD (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int J Climatol 34:623–642

    Article  Google Scholar 

  • Held IM, Delworth TL, Lu J, Findell KL, Knutson TR (2005) Simulation of Sahel drought in the 20th and 21st centuries. PNAS 102:17891–17896

    Article  Google Scholar 

  • Hodson DLR, Robson JI, Sutton RT (2014) An anatomy of the cooling of the North Atlantic Ocean in the 1960s and 1970s. J Clim 27:8229–8243

    Article  Google Scholar 

  • Hoerling M, Hurrell JW, Eischeid J, Phillips AS (2006) Detection and attribution of twentieth-century northern and southern African rainfall change. J Clim 19:3989–4008

    Article  Google Scholar 

  • Hwang YT, Frierson DMW (2013) Link between the double-intertropical convergence zone problem and cloud biases over the Southern Ocean. PNAS 110:4935–4940

    Article  Google Scholar 

  • Ickowicz A, Ancey V, Corniaux C, Duteurtre G, Poccard-Chappuis R, Toure I, Vall E and Wane A (2012) Crop-livestock production systems in the Sahel—increasing resilience for adaptation to climate change and preserving food security. Building resilience for adaptation to climate change in the agriculture sector. FAO/OECD Rome, pp 243–276

  • International CLIVAR Project Office (ICPO) (2011) Data and bias correction for decadal climate predictions. International CLIVAR Project Office CLIVAR Publication Series, vol 150, p 6

  • Janicot S, Gaetani M, Hourdin F et al (2015) The recent partial recovery in Sahel rainfall: a fingerprint of greenhouse gases forcing? GEWEX 27:11–15

    Google Scholar 

  • Kandji ST, Verchot S, Mackensen J (2006) Climate change and variability in the Sahel region: impacts and adaptation strategies in the agricultural sector. World Agroforestry Centre (ICRAF) and United Nations Environment Programme (UNEP). UNEP 2006:1–48

    Google Scholar 

  • Kawase H, Abe M, Yamada Y, Takemura T, Yokohata T, Nozawa T (2010) Physical mechanism of long-term drying trend over tropical North Africa. Geophys Res Lett 37:L09706

    Google Scholar 

  • Keenlyside NS, Ba J (2010) Prospects for decadal climate prediction. Wiley Interdiscip Rev Clim Change 1:627–635

    Article  Google Scholar 

  • Keenlyside NS, Latif M, Jungclaus J et al (2008) Advancing decadal scale climate prediction in the North Atlantic sector. Nature 453:84–88. doi:10.1038/nature06921

    Article  Google Scholar 

  • Keenlyside NS, Ba J, Mecking J, Omrani NO, Latif M, Zhang R, Msadek R (2015) North Atlantic multi-decadal variability—mechanisms and predictability. In: Chang C-P, Ghil M, Latif M, Wallace M (eds) Climate change: multidecadal and beyond. World Scientific Publishing Company, Singapore. ISBN 978-9814579926

    Google Scholar 

  • Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288:1984–1985

    Article  Google Scholar 

  • Kim HM, Websetr PJ, Curry JA (2012) Evaluation of short-term climate change prediction in mutli-model CMIP5 decadal hindcasts. Geophys Res Lett 39:L10701

    Google Scholar 

  • Knight JR (2009) The Atlantic multidecadal oscillation inferred from the forced climate response in coupled general circulation models. J Clim 22:1610–1625. doi:10.1175/2008JCLI2628.1

    Article  Google Scholar 

  • Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett. doi:10.1029/2005GL024233

    Google Scholar 

  • Knudsen MF, Seidenkrantz MS, Jacobsen BH, Kuijpers A (2011) Tracking the Atlantic multidecadal oscillation through the last 8,000 years. Nat Comm 2:178

    Article  Google Scholar 

  • Kosaka Y, **e SP (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407

    Article  Google Scholar 

  • Latif M, Collins M, Pohlmann J, Keenlyside M (2006) A review of predictability studies of Atlantic sector climate on decadal time scales. J Clim 19:5971–5987

    Article  Google Scholar 

  • Lebel T, Ali A (2009) Recent trends in the Central and Western Sahel rainfall regime (1990–2007). J Hydrol 375:52–64

    Article  Google Scholar 

  • Lu J, Delworth TL (2005) Oceanic forcing of the late 20th century Sahel drought. Geophys Res Lett. doi:10.1029/2005GL023316

    Google Scholar 

  • Mann ME, Steinman BA, Miller SK (2014) On forced temperautre changes, internal variability and the AMO. Geophys Res Lett 41:3211–3219

    Article  Google Scholar 

  • Mantua NJ, Hare SR (2002) The Pacific decadal oscillation. J Oceanogr 58:35–44

    Article  Google Scholar 

  • Martin ER, Thorncroft C (2014) Sahel rainfall in multimodel CMIP5 decadal hindcasts. Geophys Res Lett. doi:10.1002/2014GL059338

    Google Scholar 

  • Meehl GA et al (2009a) Decadal prediction: can it be skillful? Bull Am Meteorol Soc 90:1467–1485

    Article  Google Scholar 

  • Meehl GA, Hu A, Santer BD (2009b) The mod-1970s climate shift in the Pacific and the relative roles of forced versus inherent decadal variability. J Clim 22:780–792

    Article  Google Scholar 

  • Mochizuki T et al (2010) Pacific decadal oscillation hindcasts relevant to near-term climate prediction. Proc Natl Acad Sci USA 107:1833–1837

    Article  Google Scholar 

  • Mohino E, Janicot S, Bader J (2011) Sahel rainfall and decadal to multi-decadal sea surface temperature variability. Clim Dyn 37:419–440

    Article  Google Scholar 

  • Müller WA, Pohlmann H, Sienz F, Smith D (2014) Decadal climate predictions for the period 1901–2010 with a coupled climate model. Geophys Res Lett 41(6):2100–2107. doi:10.1002/2014GL059259

    Article  Google Scholar 

  • Müller WA, Matei D, Bersch M, Jungclaus JH, Haak H, Lohmann K, Compo GP, Sardeshmukh PD, Marotzke J (2015) A twentieth century reanalysis forced ocean model to reconstruct the North Atlantic climate variation during the 1920s. Clim Dyn 44:1935–1955. doi:10.1007/s00382-014-2267-5

    Article  Google Scholar 

  • Otero N, Mohino E, Gaetani M (2015) Decadal prediction of Sahel rainfall using dynamics-based indices. Clim Dyn. doi:10.1007/s00382-015-2738-3

    Google Scholar 

  • Ottera OH, Bentsen M, Drange H, Suo L (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci 3:688–694

    Article  Google Scholar 

  • Park JY, Bader J, Matei D (2015) Northern-hemispheric differential warming is the key to understanding the discrepancies in the projected Sahel rainfall. Nat Commun. doi:10.1038/ncomms6985

    Google Scholar 

  • Park JY, Bader J, Matei D (2016) Anthropogenic Mediterranean warming essential driver for present and future Sahel rainfall. Nat Commun. doi:10.1038/nclimate3065

    Google Scholar 

  • Pohlmann H, Jungclaus JH, Köhl A, Stammer D, Marotzke J (2009) Initializing decadal climate predictions with the GECCO oceanic synthesis: effect on the North Atlantic. J Clim 22:3926–3938

    Article  Google Scholar 

  • Power S, Casey T, Folland C, Colman A, Mehta V (1999) Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn 15:319–324

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the nineteenth century. J Geophys Res. doi:10.1029/2002JD002670

    Google Scholar 

  • Rodriguez-Fonseca B, Mohino E, Mechoso CR et al (2015) Variability and predictability of West African droughts: a review on the role of sea surface temperature anomalies. J Clim 28:4034–4060

    Article  Google Scholar 

  • Rotstayn LD, Lohmann U (2002) Tropical rainfall trends and the indirect aerosol effect. J Clim 15:2103–2116

    Article  Google Scholar 

  • Schneider N, Miller AJ, Pierce DW (2002) Anatomy of North Pacific decadal variability. J Clim 15:586–605

    Article  Google Scholar 

  • Smith DM, Cusack S, Colman AW, Folland CK, Harris GR, Murphy JM (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317:796–799

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296. doi:10.1175/2007JCLI2100.1

    Article  Google Scholar 

  • Stevens B (2013) Uncertain then, irrelevant now. Nature 503:47–48

    Article  Google Scholar 

  • Svendsen L, Kvamsto NG, Keenlyside N (2014) Weakening AMOC connects Equatorial Atlantic and Pacific interannual variability. Clim Dyn 43:2931–2941

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Terray L (2012) Evidence for multiple drivers of North Atlantic multi-decadal climate variability. Geophys Res Lett 29:L19712

    Google Scholar 

  • Ting M, Kushnir Y, Seager R, Li C (2009) Forced and internal 20th century SST trends in the North Atlantic. J Clim 22:1469–1481

    Article  Google Scholar 

  • Ting M, Kushnir Y, Seager R, Li C (2011) Robust features of Atlantic multi-decadal variability and its climate impacts. Geophys Res Lett 38:L17705

    Article  Google Scholar 

  • Trenberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geophys Res Lett. doi:10.1029/2006GL026894

    Google Scholar 

  • Tung KK, Zhou J (2013) Using data to attribute episodes of warming and cooling in instrumental records. PNAS 110:2058–2063

    Article  Google Scholar 

  • van Oldenborgh GJ, Doblas-Reyes FJ, Wouters B, Hazeleger W (2012) Decadal prediction skill in a multi-model ensemble. Clim Dyn 38:1263–1280. doi:10.1007/s00382-012-1313-4

    Article  Google Scholar 

  • Vecchi GA, Clement A, Solden BJ (2008) Examining the tropical Pacific’s response to global warming. EOS 89(9):81–83

    Article  Google Scholar 

  • Vellinga M, Roberts M, Vidale PL, Mizielinski MS, Demory ME, Schiemann R, Strachan J, Bain C (2016) Sahel decadal rainfall variability and the role of model horizontal resolution. Geophys Res Lett 43:326–333. doi:10.1002/2015GL066690

    Article  Google Scholar 

  • Villamayor J, Mohino E (2015) Robust Sahel drought due to the interdecadal Pacific oscillation in CMIP5 simulations. Geophys Res Lett 42:1214–1222

    Article  Google Scholar 

  • Wang GL, Eltahir EAB, Foley JA, Pollard D, Levis S (2004) Decadal variability of rainfall in the Sahel: results from the coupled GENESIS-IBIS atmosphere–biosphere model. Clim Dyn 22:625–637. doi:10.1007/s00382-004-0411-3

    Article  Google Scholar 

  • Yeager S, Karspeck A, Danabasoglu G, Tribbia J, Teng HY (2012) A decadal prediction case study: late twentieth-century North Atlantic ocean heat content. J Clim 25:5173–5189

    Article  Google Scholar 

  • Zhang R (2007) Anticorrelated multidecadal variations between surface and subsurface tropical North Atlantic. Geophys Res Lett 34:L12713

    Article  Google Scholar 

  • Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett. doi:10.1029/2006GL026267

    Google Scholar 

  • Zhang R, Delworth TL, Sutton R et al (2013) Have aerosols caused the observed Atlantic multidecadal variability? J Atmos Sci 70:1135–1144

    Article  Google Scholar 

Download references

Acknowledgements

We thank the two anonymous reviewers and the editor for their comments and suggestions that helped improve the first version of the manuscript. This work was supported by a grant from Iceland, Liechtenstein and Norway through the EEA Financial Mechanism. Operated by Universidad Complutense de Madrid (Reference 011-ABEL-IM-2014A). It also received contributions from the European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreements Nos. 603521 and 308378, the German Federal Ministry of Education and Research (BMBF) Project MiKlip-DroughtClip (FKZ 01LP1145A), the Spanish Project CGL2012-38923-C02-01, and from Research Council of Norway (233680/E10). Special thanks are due to Wolfgang Müller for the discussion and for providing data of the MPI-ESM-LR decadal hindcasts. N.K. received support from the ERC STERCP project (Grant Agreement No. 648982).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elsa Mohino.

Additional information

This paper is a contribution to the special issue on West African climate decadal variability and its modeling, consisting of papers from the West African Monsoon Modeling and Evaluation (WAMME) and the African Multidisciplinary Monsoon Analyses (AMMA) projects, and coordinated by Yongkang Xue, Serge Janicot, and William Lau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohino, E., Keenlyside, N. & Pohlmann, H. Decadal prediction of Sahel rainfall: where does the skill (or lack thereof) come from?. Clim Dyn 47, 3593–3612 (2016). https://doi.org/10.1007/s00382-016-3416-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3416-9

Keywords

Navigation