Log in

On the ratio between shifts in the eddy-driven jet and the Hadley cell edge

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study explores the relationship between latitudinal shifts in the eddy-driven jet and in the Hadley cell edge as depicted in models and reanalyses. We calculate an interannual shift ratio of approximately 1.5:1 between the eddy-driven jet and the Hadley cell edge over the Southern Hemisphere during austral summer in model data. We further find that the ratio varies from season to season, with similarities between corresponding seasons over each hemisphere. Ratios are broadly consistent between models in this study, and appear to be realistic when compared to those from reanalyses. Mean tropical SSTs and the strength of zonal winds in the tropics appear to be critical to determining the ratio, while sea surface temperature variability is not. We argue that conditions in the tropics act to modulate the effect of midlatitude eddies on the Hadley cell, and the action of eddies in turn explains most of the correlated shifts from year to year. In contrast, the mean state of the tropics is a poor predictor of both the ratio of observed trends in reanalyses and the ratio of modeled externally forced shifts. We show that the ratios of modeled shifts are dependent on the type of external forcing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. We integrate to 90° in all cases, since the poleward edge of the Ferrel cell is often poorly defined. This necessitates masking out any oppositely signed polar circulation that may be present.

References

  • Anderson BT, Balaji V, Broccoli AJ, Cooke WF, Delworth TL, Dixon KW, Donner LJ, Dunne KA, Freidenreich SM, Garner ST, Gudgel RG, Gordon CT, Held IM, Hemler RS, Horowitz LW, Klein SA, Knutson TR, Kushner PJ, Langenhost AR, Lau NC, Liang Z, Malyshev SL, Milly PCD, Nath MJ, Ploshay JJ, Ramaswamy V, Schwarzkopf MD, Shevliakova E, Sirutis JJ, Soden BJ, Stern WF, Thompson LA, Wilson RJ, Wittenberg AT, Wyman BL (2004) DevGGAM: the new GFDL global atmosphere and land model AM2-LM2: evaluation with prescribed SST simulations. J Clim 17(24):4641–4673. doi:10.1175/JCLI-3223.1

    Article  Google Scholar 

  • Bordoni S, Schneider T (2009) Regime transitions of steady and time-dependent Hadley circulations: comparison of axisymmetric and eddy-permitting simulations. J Atmos Sci 67(5):1643–1654. doi:10.1175/2009JAS3294.1

    Article  Google Scholar 

  • Ceppi P, Hartmann DL (2013) On the speed of the eddy-driven jet and the width of the hadley cell in the southern hemisphere. J Clim 26(10):3450–3465. doi:10.1175/JCLI-D-12-00414.1

    Article  Google Scholar 

  • Chen G, Held IM (2007) Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys Res Lett 34(21):L21,805. doi:10.1029/2007GL031200

    Article  Google Scholar 

  • Clement A, DiNezio P, Deser C (2011) Rethinking the oceans role in the southern oscillation. J Clim 24(15):4056–4072. doi:10.1175/2011JCLI3973.1

    Article  Google Scholar 

  • Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD (2006) The community climate system model version 3 (ccsm3). J Clim 19(11):2122–2143. doi:10.1175/JCLI3761.1

    Article  Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Brnnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli O, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137(654):1–28. doi:10.1002/qj.776

    Article  Google Scholar 

  • Davis SM, Rosenlof KH (2011) A multidiagnostic intercomparison of tropical-width time series using reanalyses and satellite observations. J Clim 25(4):1061–1078. doi:10.1175/JCLI-D-11-00127.1

    Article  Google Scholar 

  • Dee DP, Uppala S (2009) Variational bias correction of satellite radiance data in the era-interim reanalysis. Q J R Meteorol Soc 135(644):1830–1841. doi:10.1002/qj.493

    Article  Google Scholar 

  • Delworth TL, Broccoli AJ, Rosati A, Stouffer RJ, Balaji V, Beesley JA, Cooke WF, Dixon KW, Dunne J, Dunne KA, Durachta JW, Findell KL, Ginoux P, Gnanadesikan A, Gordon CT, Griffies SM, Gudgel R, Harrison MJ, Held IM, Hemler RS, Horowitz LW, Klein SA, Knutson TR, Kushner PJ, Langenhorst AR, Lee HC, Lin SJ, Lu J, Malyshev SL, Milly PCD, Ramaswamy V, Russell J, Schwarzkopf MD, Shevliakova E, Sirutis JJ, Spelman MJ, Stern WF, Winton M, Wittenberg AT, Wyman B, Zeng F, Zhang R (2006) GFDL’s CM2 global coupled climate models. Part I: formulation and simulation characteristics. J Clim 19(5):643–674. doi:10.1175/JCLI3629.1

    Article  Google Scholar 

  • Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH, Yang ZL, Zhang M (2011) The community climate system model version 4. J Clim 24(19):4973–4991. doi:10.1175/2011JCLI4083.1

    Article  Google Scholar 

  • Greatbatch RJ, Gollan G, Jung T, Kunz T (2012) Factors influencing northern hemisphere winter mean atmospheric circulation anomalies during the period 1960/61 to 2001/02. Q J R Meteorol Soc 138(669):1970–1982. doi:10.1002/qj.1947

    Article  Google Scholar 

  • Held IM, Hou AY (1980) Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci. 37(3):515–533. doi:10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2

  • Held IM, Salmon R, Fields J, Thiffeault JL (2000) The general circulation of the atmosphere. In: The general circulation of the atmosphere: 2000 program in geophysical fluid dynamics, Tech. Rep. WHOI-2001-03, pp. 1–54. Woods Hole Oceanogr. Inst., Woods Hole, Mass. http://hdl.handle.net/1912/15

  • Hu Y, Fu Q (2007) Observed poleward expansion of the hadley circulation since 1979. Atmos Chem Phys 7(19):5229–5236. http://www.atmos-chem-phys.net/7/5229/2007/

    Google Scholar 

  • Hurrell JW, Hack JJ, Phillips AS, Caron J, Yin J (2006) The dynamical simulation of the community atmosphere model version 3 (cam3). J Clim 19(11):2162–2183. doi:10.1175/JCLI3762.1

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph, D.: The NCEP/NCAR 40-year Reanalysis Project. Bull Amer Meteor Soc 77(3):437–471 (1996). doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

    Google Scholar 

  • Kang SM, Lu J (2012) Expansion of the hadley cell under global warming: winter versus summer. J Clim 25(24):8387–8393. doi:10.1175/JCLI-D-12-00323.1

    Article  Google Scholar 

  • Kang SM, Polvani LM (2010) The interannual relationship between the latitude of the eddy-driven jet and the edge of the Hadley cell. J Clim 24(2):563–568. doi:10.1175/2010JCLI4077.1

    Article  Google Scholar 

  • Kidston J, Cairns CW, Paga P (2013) Variability in the width of the tropics and the annular modes. Geophys Res Lett. doi:10.1029/2012GL054165

  • Korty RL, Schneider T (2008) Extent of Hadley circulations in dry atmospheres. Geophys Res Lett. 35(23):L23803. doi:10.1029/2008GL035847

    Article  Google Scholar 

  • Kushner PJ, Held IM, Delworth TL (2001) Southern Hemisphere atmospheric circulation response to global warming. J Clim 14(10):2238–2249. doi:10.1175/1520-0442(2001)014<0001:SHACRT>2.0.CO;2

    Google Scholar 

  • Lu J, Chen G, Frierson DMW (2008) Response of the zonal mean atmospheric circulation to El Niño versus global warming. J Clim 21(22):5835–5851. doi:10.1175/2008JCLI2200.1

    Article  Google Scholar 

  • Lu J, Chen G, Frierson DMW (2010) The position of the midlatitude storm track and eddy-driven westerlies in aquaplanet AGCMs. J Atmos Sci 67(12):3984–4000. doi:10.1175/2010JAS3477.1

    Article  Google Scholar 

  • Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warming. Geophys Res Lett 34(6):L06,805. doi:10.1029/2006GL028443

    Article  Google Scholar 

  • McLandress C, Shepherd TG, Scinocca JF, Plummer DA, Sigmond M, Jonsson AI, Reader MC (2010) Separating the dynamical effects of climate change and ozone depletion. Part II: Southern Hemisphere troposphere. J Clim 24(6):1850–1868. doi:10.1175/2010JCLI3958.1

    Article  Google Scholar 

  • Meehl GA, Covey C, Taylor KE, Delworth T, Stouffer RJ, Latif M, McAvaney B, Mitchell JFB (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull. Amer. Meteor. Soc. 88(9):1383–1394. doi:10.1175/BAMS-88-9-1383

    Article  Google Scholar 

  • Perlwitz J (2011) Atmospheric science: Tug of war on the jet stream. Nat Clim Chang 1(1):29–31. doi:10.1038/nclimate1065

    Article  Google Scholar 

  • Previdi M, Liepert BG (2007) Annular modes and Hadley cell expansion under global warming. Geophys Res Lett 34(22):L22,701. doi:10.1029/2007GL031243

    Article  Google Scholar 

  • Reichler T (2009) Chapter 7—changes in the atmospheric circulation as indicator of climate change. In: Letcher TM (ed) Climate change. Elsevier, Amsterdam, pp. 145–164. doi:10.1016/B978-0-444-53301-2.00007-5

  • Reichler T, Dameris M, Sausen R (2003) Determining the tropopause height from gridded data. Geophys Res Lett 30(20):2042. doi:10.1029/2003GL018240

    Article  Google Scholar 

  • Rivire G (2011) A dynamical interpretation of the poleward shift of the jet streams in global warming scenarios. J Atmos Sci 68(6):1253–1272. doi:10.1175/2011JAS3641.1

    Article  Google Scholar 

  • Robinson WA (2002) On the midlatitude thermal response to tropical warmth. Geophys Res Lett 29(8):1190. doi:10.1029/2001GL014158

    Google Scholar 

  • Rosenlof KH (2002) Transport changes inferred from HALOE water and methane measurements. J Meteor Soc Japan 80(4B):831–848. doi:10.2151/jmsj.80.831

    Article  Google Scholar 

  • Schneider T, Bordoni S (2008) Eddy-mediated regime transitions in the seasonal cycle of a Hadley circulation and implications for monsoon dynamics. J Atmos Sci 65(3):915–934. doi:10.1175/2007JAS2415.1

    Article  Google Scholar 

  • Schneider T, O’Gorman PA, Levine XJ (2010) Water vapor and the dynamics of climate changes. Rev Geophys 48(3):RG3001. doi:10.1029/2009RG000302

    Article  Google Scholar 

  • Seager R, Harnik N, Kushnir Y, Robinson W, Miller J (2003) Mechanisms of hemispherically symmetric climate variability. J Clim 16(18):2960–2978. doi:10.1175/1520-0442(2003)016<2960:MOHSCV>2.0.CO;2

    Google Scholar 

  • Seidel DJ, Fu Q, Randel WJ, Reichler TJ (2008) Widening of the tropical belt in a changing climate. Nat Geosci 1(1):21–24. doi:10.1038/ngeo.2007.38

    Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: IPCC 2007: climate change 2007. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. http://www.ipcc.ch/publications_and_data/ar4/wg1/en/contents.html

  • Stachnik JP, Schumacher C (2011) A comparison of the Hadley circulation in modern reanalyses. J Geophys Res 116:D22102. doi:10.1029/2011JD016677

    Article  Google Scholar 

  • Staten PW, Reichler T, Lu J (2010) Understanding the direct and indirect circulation response to radiative forcings. In: AGU fall meeting. http://www.inscc.utah.edu/pstaten/talks/Staten_2010_AGU_A33A-0149.pdf

  • Staten PW, Reichler T, Lu J (2011) Southern hemisphere circulation shifts in a warming climate. In: World climate research program open science conference. http://www.inscc.utah.edu/pstaten/talks/C36_Staten_Th54A.pdf

  • Staten PW, Rutz JJ, Reichler T, Lu J (2011) Breaking down the tropospheric circulation response by forcing. Clim Dyn 39:2361–2375. doi:10.1007/s00382-011-1267-y

    Article  Google Scholar 

  • Thompson DWJ, Lorenz DJ (2004) The signature of the annular modes in the tropical troposphere. J Clim 17(22):4330–4342. doi:10.1175/3193.1

    Article  Google Scholar 

  • Uppala SM, KÅllberg PW, Simmons AJ, Andrae U, Bechtold VDC, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Berg LVD, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hlm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, Mcnally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • Walker CC, Schneider T (2006) Eddy influences on Hadley circulations: simulations with an idealized GCM. J Atmos Sci 63(12):3333–3350. doi:10.1175/JAS3821.1

    Article  Google Scholar 

  • Yu B, Lin H (2013) Tropical american-atlantic forcing of austral summertime variability in the southern annular mode. Geophys Res Lett pp. n/a–n/a. doi:10.1002/grl.50231

Download references

Acknowledgments

The authors thank two anonymous reviewers for their helpful suggestions. The work described in this publication was performed at the University of Utah department of Atmospheric Sciences. The writing and publication of this publication was supported by the JPL, Caltech, under a contract with NASA. We acknowledge the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset. We likewise acknowledge GFDL for making available their model framework and data. We thank the University of Utah Center for High Performance Computing (CHPC) for computing support. This research makes use of NCAR model data obtained from the NCAR Earth System Grid, as well as resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research was funded in part by a NSF-GK12 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Staten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staten, P.W., Reichler, T. On the ratio between shifts in the eddy-driven jet and the Hadley cell edge. Clim Dyn 42, 1229–1242 (2014). https://doi.org/10.1007/s00382-013-1905-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1905-7

Keywords

Navigation