Log in

Impacts of convection schemes on simulating tropical-temperate troughs over southern Africa

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study examines southern African summer rainfall and tropical temperate troughs (TTTs) simulated with three versions of an atmospheric general circulation model differing only in the convection scheme. All three versions provide realistic simulations of key aspects of the summer (November–February) rainfall, such as the spatial distribution of total rainfall and the percentage of rainfall associated with TTTs. However, one version has a large bias in the onset of the rainy season. Results from self-organizing map (SOM) analysis on simulated daily precipitation data reveals that this is because the occurrence of TTTs is underestimated in November. This model bias is not related to westerly wind shear that provides favorable conditions for the development of TTTs. Rather, it is related to excessive upper level convergence and associated subsidence over southern Africa. Furthermore, the model versions are shown to be successful in capturing the observed drier (wetter) conditions over the southern African region during El Niño (La Niña) years. The SOM analysis reveals that nodes associated with TTTs in the southern (northern) part of the domain are observed less (more) often during El Niño years, while nodes associated with TTTs occur more frequently during La Niña years. Also, nodes associated with dry conditions over southern Africa are more (less) frequently observed during El Niño (La Niña) years. The models tend to perform better for La Niña events, because they are more successful in representing the observed frequency of different synoptic patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Adler RF, Huffman GJ, Chang A, Ferraro R, **e P-P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeor 4:1147–1167

    Article  Google Scholar 

  • Behera SK, Yamagata T (2001) Subtropical SST dipole events in the southern Indian Ocean. Geophys Res Lett 28:327–330

    Article  Google Scholar 

  • Behera SK, Luo J–J, Masson S, Delecluse P, Gualdi S, Navarra A, Yamagata T (2005) Paramount impact of the Indian Ocean dipole on the east African short rains: a CGCM study. J Clim 18:4514–4530

    Article  Google Scholar 

  • Chakraborty A, Krishnamurti TN (2009) Improving global model precipitation forecasts over India using downscaling and the FSU superensemble. Part II: seasonal climate. Mon Weather Rev 137:2736–2757

    Article  Google Scholar 

  • Chakraborty A, Behera SK, Mujumdar M, Ohba R, Yamagata T (2005) Diagnosis of tropospheric moisture over Saudi Arabia and influences of IOD and ENSO. Mon Weather Rev 134:598–617

    Article  Google Scholar 

  • Cook KH (2000) The south Indian convergence zone and interannual rainfall variability over southern Africa. J Clim 13:3789–3804

    Article  Google Scholar 

  • Cook KH (2001) A Southern hemisphere wave response to ENSO with implications for southern Africa precipitation. J Atmos Sci 58:2146–2162

    Article  Google Scholar 

  • Crétat J, Pohl B, Richard Y, Drobinski P (2012) Uncertainties in simulating regional climate of Southern Africa: sensitivity to physical parameterization using WRF. Clim Dyn 38:613–634

    Article  Google Scholar 

  • Doi T, Tozuka T, Yamagata T (2010) The Atlantic meridional mode and its coupled variability with the Guinea Dome. J Clim 23:455–475

    Article  Google Scholar 

  • Emanuel K (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48:2313–2335

    Article  Google Scholar 

  • Engelbrecht FA, McGregor JL, Engelbrecht CJ (2009) Dynamics of the conformal cubic atmospheric model projected climate-change signal over southern Africa. Int J Climatol 29:1013–1033

    Article  Google Scholar 

  • Fauchereau N, Pohl B, Reason CJC, Rouault M, Richard Y (2009) Recurrent daily OLR patterns in the Southern Africa/Southwest Indian Ocean region, implications for South African rainfall and teleconnections. Clim Dyn 32:575–591

    Article  Google Scholar 

  • Guan Z, Iizuka S, Chiba M, Yamane S, Ashok K, Honda M, Yamagata T (2000) Frontier atmospheric general circulation model version 1.0 (FrAM1.0): model climatology. Tech Rep 1:27

    Google Scholar 

  • Harrison MSJ (1984) A generalized classification of South African summer rain-bearing synoptic systems. J Climatol 4:547–560

    Article  Google Scholar 

  • Hurrell JW, Hack JJ, Shea D, Caron JM, Rosinski J (2008) Sea surface temperature and sea ice boundary dataset for the community atmosphere model. J Clim 21:5145–5153

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Kataoka T, Tozuka T, Masumoto Y, Yamagata T (2012) The Indian Ocean subtropical dipole mode simulated in the CMIP3 models. Clim Dyn 39:1385–1399

    Article  Google Scholar 

  • Kohonen T (1982) Self-organized information of topologically correct features maps. Biol Cyber 43:59–69

    Article  Google Scholar 

  • Kohonen T (2001) Self-organizing maps, 3rd edn. Springer, Berlin, p 501

    Book  Google Scholar 

  • Kohonen T, Hynninen J, Kangas J, Laaksonen J (1995) SOM_PAK, the self-organizing map program package version 3.1. Laboratory of Computer and Information Science, Helsinki University of Technology, Finland, p 27

    Book  Google Scholar 

  • Kuo HL (1974) Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J Atmos Sci 31:1232–1240

    Article  Google Scholar 

  • Lacis AA, Hansen JE (1974) A parameterization for the absorption of solar radiation in the earth’s atmosphere. J Atmos Sci 31:118–133

    Article  Google Scholar 

  • Landman WA, Beraki A (2012) Multi-model forecast skill for mid-summer rainfall over southern Africa. Int J Climatol 32:303–314

    Article  Google Scholar 

  • Landman WA, Kgatuke MJ, Mbedzi M, Beraki A, Bartman A, du Piesanie A (2009) Performance comparison of some dynamical and empirical downscaling methods for South Africa from a seasonal climate modelling perspective. Int J Climatol 29:1535–1549

    Article  Google Scholar 

  • Lindesay JA, Vogel CH (1990) Historical evidence for southern oscillation-southern African rainfall relationships. Int J Climatol 10:679–689

    Article  Google Scholar 

  • Louis J, Tiedtke M, Geleyn JF (1982) A short history of PBL parameterization at ECMWF. Workshop on Planetary Boundary Layer Parameterization, ECMWF, pp 59–80

    Google Scholar 

  • Lyon B (2009) Southern Africa summer drought and heat waves: observations and coupled model behavior. J Clim 22:6033–6046

    Article  Google Scholar 

  • Lyon B, Mason SJ (2007) The 1997–98 summer rainfall season in southern Africa. Part I: observations. J Clim 20:5134–5148

    Article  Google Scholar 

  • Lyon B, Mason SJ (2009) The 1997–98 summer rainfall season in southern Africa. Part II: model simulations and coupled model forecasts. J Clim 22:3802–3818

    Article  Google Scholar 

  • MacKellar N, Tadross M, Hewitson B (2010) Synoptic-based evaluation of climatic response to vegetation changes over southern Africa. Int J Climatol 30:774–789

    Google Scholar 

  • Manhique AJ, Reason CJC, Rydberg L, Fauchereau N (2011) ENSO and Indian Ocean sea surface temperatures and their relationships with tropical temperate troughs over Mozambique and the southwest Indian Ocean. Int J Climatol 31:1–13

    Article  Google Scholar 

  • Mason SJ (1995) Sea-surface temperature-South African rainfall associations, 1910–1989. Int J Climatol 15:119–135

    Article  Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer KJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394

    Article  Google Scholar 

  • Misra J (1991) Phase synchronization. Info Process Lett 38:101–105

    Article  Google Scholar 

  • Morioka Y, Tozuka T, Yamagata T (2010) Climate variability in the southern Indian Ocean as revealed by self-organizing maps. Clim Dyn 35:1075–1088

    Article  Google Scholar 

  • Morioka Y, Tozuka T, Yamagata T (2011) On the growth and decay of the subtropical dipole mode in the South Atlantic. J Clim 24:5538–5554

    Article  Google Scholar 

  • Morioka Y, Tozuka T, Yamagata T (2012) Subtropical dipole modes simulated in a coupled general circulation model. J Clim 25:4029–4047

    Article  Google Scholar 

  • Nicholls N, Uotila P, Alexander L (2010) Synoptic influences on seasonal, interannual and temperature variations in Melbourne, Australia. Int J Climatol 30:1372–1381

    Google Scholar 

  • Ninomiya K (2008) Similarities and differences among the South Indian Ocean convergence zone, North American convergence zone, and other subtropical convergence zone simulated using an AGCM. J Meteorol Soc Jpn 86:141–165

    Article  Google Scholar 

  • Palmer TN, Shutts GJ, Swinbank R (1986) Alleviation of systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Q J R Meteorol Soc 112:1001–1039

    Article  Google Scholar 

  • Ratna SB, Behera S, Ratnam JV, Takahashi K, Yamagata T (2012) An index for tropical temperate troughs over southern Africa. Clim Dyn. doi:10.1007/s00382-012-15401548

    Google Scholar 

  • Ratnam JV, Behera SK, Masumoto Y, Takahashi K, Yamagata T (2012) A simple regional coupled model experiment for summer-time climate simulation over southern Africa. Clim Dyn 39:2207–2217

    Article  Google Scholar 

  • Reason CJC (2002) Sensitivity of the southern African circulation to dipole sea-surface temperature patterns in the south Indian Ocean. Int J Climatol 22:377–393

    Article  Google Scholar 

  • Reason CJC, Landman W, Tennant W (2006) Seasonal to decadal prediction of southern African climate and its link with variability of the Atlantic Ocean. Bull Am Meteorol Soc 87:941–955

    Article  Google Scholar 

  • Richard Y, Trzaska Roucou P, Rouault M (2000) Modification of the southern African rainfall variability/ENSO relationship since the late 1960s. Clim Dyn 16:883–895

    Article  Google Scholar 

  • Rogers E, Black TL, Deaven DG, DiMego GJ, Zhao Q, Baldwin M, Junker NW, Lin Y (1996) Changes to the operational “early” eta analysis/forecast system at the National Centers for Environmental Prediction. Weather Forecast 11:391–413

    Article  Google Scholar 

  • Rouault M, Florenchie P, Fauchereau N, Reason CJC (2003) South east tropical Atlantic warm events and southern African rainfall. Geophys Res Lett 30:8009. doi:10.1029/2002GL014840

    Article  Google Scholar 

  • Shibata K (1989) An economical scheme for the vertical integral of atmospheric emission in longwave radiation transfer. J Meteorol Soc Jpn 67:1047–1055

    Google Scholar 

  • Shibata K, Aoki T (1989) An infrared radiative scheme for the numerical models of weather and climate. J Geophys Res 94:14923–14943

    Article  Google Scholar 

  • Shongwe ME, van Oldenborgh GJ, van der Hurk BJJM, de Boer B, Coelho CAS, van Aalst MK (2009) Projected changes in mean and extreme precipitation in Africa under global warming. Part I: Southern Africa. J Clim 22:3819–3837

    Article  Google Scholar 

  • Singh AP, Singh RP, Raju PVS, Bhatla R (2011) The impact of three different cumulus parameterizations schemes on the Indian summer monsoon circulation. Int J Clim Ocean Sys 2:27–44

    Article  Google Scholar 

  • Sinha P, Mohanty UC, Kar SC, Dash SK, Kumari S (2012) Sensitivity of the GCM driven summer monsoon simulations to cumulus parameterization schemes in nested RegCM3. Theor Appl Climatol. doi:10.1007/s00704-012-0728-5

    Google Scholar 

  • Slingo A, Slingo JM (1991) Response of the national center for atmospheric research community climate model to improvements in the representation of clouds. J Geophys Res 96:15341–15357

    Article  Google Scholar 

  • Stensrud DJ (2007) Parameterization schemes: keys to understanding numerical weather prediction models. Cambridge University Press, New York, p 459

    Book  Google Scholar 

  • Tadross M, Jack C, Hewitson B (2005) On RCM-based projections of change in southern African summer climate. Geophys Res Lett 32:L23713. doi:10.1029/2005GL024460

    Article  Google Scholar 

  • Thomas DSG, Twyman C, Osbahr H, Hewitson B (2007) Adaptation to climate change and variability: farmer responses to intra-seasonal precipitation trends in South Africa. Clim Change 83:301–322

    Article  Google Scholar 

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800

    Article  Google Scholar 

  • Todd M, Washington R (1999) Circulation anomalies associated with tropical-temperate troughs in southern Africa and the south west Indian Ocean. Clim Dyn 15:937–951

    Article  Google Scholar 

  • Todd MC, Washington R, Palmer PI (2004) Water vapour transport associated with tropical-temperate trough systems over southern Africa and the southwest Indian Ocean. Int J Climatol 24:555–568

    Article  Google Scholar 

  • Tozuka T, Miyasaka T, Chakraborty A, Mujumdar M, Behera SK, Masumoto Y, Nakamura H, Yamagata T (2006) University of Tokyo coupled general circulation model (UTCM1.0). Ocean-Atmos Res Rep 7:44

    Google Scholar 

  • Tozuka T, Luo JJ, Masson S, Yamagata T (2008) Tropical Indian Ocean variability revealed by self-organizing maps. Clim Dyn 31:333–343

    Article  Google Scholar 

  • Tozuka T, Doi T, Miyasaka T, Keenlyside N, Yamagata T (2011) Key factors in simulating the equatorial Atlantic zonal SST gradient in a coupled GCM. J Geophys Res 116:C06010. doi:10.1029/2010JC006717

    Article  Google Scholar 

  • Uppala SM et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Van den Heever SC, D’Abreton PC, Tyson PD (1997) Numerical simulation of tropical-temperate troughs over southern Africa using the CSU RAMS model. S Afr J Sci 93:359–365

    Google Scholar 

  • Vigaud N, Richard Y, Rouault M, Fauchereau N (2008) Moisture transport between the south Atlantic Ocean and southern Africa: relationships with summer rainfall and associated dynamics. Clim Dyn 32:113–123

    Article  Google Scholar 

  • Vigaud N, Pohl B, Crétat J (2012) Tropical-temperate interactions over southern Africa simulated by a regional climate model. Clim Dyn 39:2895–2916

    Article  Google Scholar 

  • Viterbo P, Beljaars ACM (1995) An improved land surface parameterization scheme in the ECMWF model and its validation. J Clim 8:2716–2748

    Article  Google Scholar 

  • Washington R, Preston A (2006) Extreme wet years over southern Africa: role of Indian Ocean sea surface temperature. J Geophys Res 111:D15104. doi:10.1029/2005JD006724

    Article  Google Scholar 

  • Washington R, Todd M (1999) Tropical-temperate links in southern African and southwest Indian Ocean satellite-derived daily rainfall. Int J Climatol 19:1601–1616

    Article  Google Scholar 

  • Williams CJR, Kniveton DR, Layberry R (2008) Influence of South Atlantic sea surface temperatures on rainfall variability and extremes over southern Africa. J Clim 21:6498–6520

    Article  Google Scholar 

  • Yuan C, Tozuka T, Yamagata T (2012) IOD influence on the early winter Tibetan plateau snow cover: diagnostic analyses and an AGCM simulation. Clim Dyn 39:1643–1660

    Article  Google Scholar 

  • Yuan C, Tozuka T, Luo JJ, Yamagata T (2013) Predictability of the subtropical dipole modes in a coupled ocean-atmosphere model. Clim Dyn. doi:10.1007/s00382-013-1704-1

    Google Scholar 

Download references

Acknowledgments

Constructive comments from two anonymous reviewers helped us to improve our manuscript. The AGCM was run on the supercomputers of Information Technology Center, the University of Tokyo under the cooperative research with Atmosphere and Ocean Research Institute, the University of Tokyo. The SOM_PAK software was provided by the Neural Network Research Centre at the Helsinki University of Technology and is available at http://www.cis.hut.fi/research/som_pak. The present research is supported by Japan Science and Technology Agency and Japan International Cooperation Agency through Science and Technology Research Partnership for Sustainable Development (SATREPS). The first author is supported by the Japan Society for Promotion of Science through Grant-in-Aid for Exploratory Research 24654150. The second and third authors acknowledge the support from the Applied Centre for Climate and Earth System Studies (ACCESS, South Africa), and National Research Foundation (NRF, South Africa) in performing this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoki Tozuka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tozuka, T., Abiodun, B.J. & Engelbrecht, F.A. Impacts of convection schemes on simulating tropical-temperate troughs over southern Africa. Clim Dyn 42, 433–451 (2014). https://doi.org/10.1007/s00382-013-1738-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1738-4

Keywords

Navigation