Log in

Decreasing Asian summer monsoon intensity after 1860 AD in the global warming epoch

  • Published:
Climate Dynamics Aims and scope Submit manuscript

An Erratum to this article was published on 18 July 2012

Abstract

The trend of the Indian summer monsoon (ISM) intensity and its nature during the past 100 and 200 years still remain unclear. In this study we reconstructed the ISM intensity during the past 270 years from tree ring δ18O at Hongyuan, eastern edge of the Tibet Plateau. The monsoon failures inferred from δ18Otree ring correlate well with those recorded in ice cores, speleothem, and historical literature sources. 22.6, 59.0, and 110.9-years frequency components in the Hongyuan δ18Otree ring series, which may be the responses to solar activities, synchronize well with those recorded in other ISM indices. A notable feature of the reconstructed ISM intensity is the gradually decreasing trend from about 1860 to the present, which is inversely related to the increasing temperature trend contemporaneously. Such “decreasing ISM intensity–increasing temperature” tendency can also be supported by ice core records and meteorological records over a wide geographic extension. The decrease in sea surface temperature gradient between tropical and north Indian Ocean, and the decrease in land-sea thermal contrast between tropical Indian Ocean and “Indian sub-continent–western Himalaya” are possibly responsible for the observed decreasing ISM trend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agnihotri R, Dutta K (2003) Centennial scale variations in monsoonal rainfall (Indian, east equatorial and Chinese monsoons): manifestations of solar variability. Curr Sci 85:459–463

    Google Scholar 

  • Agnihotri R, Dutta K, Bhushan R, Somayajulu BLK (2002) Evidence for solar forcing on the Indian Monsoon during the last millennium. Earth Planet Sci Lett 198:521–527

    Article  Google Scholar 

  • Anderson DM, Overpeck JT, Gupta AK (2002) Increase in the Asian southwest monsoon during the past four centuries. Science 297:596–599

    Article  Google Scholar 

  • Borella S, Leuenberger M, Saurer M, Siegwolf R (1998) Reducing uncertainties in δ13C analysis of tree rings: pooling, milling, and cellulose extraction. J Geophys Res 103(D16):19519–19526. doi:10.1029/98JD01169

    Google Scholar 

  • Burns SJ, Fleitmann D, Mudelsee M, Neff U, Matter A, Mangini A(2002)A 780-year annually resolved record of Indian Ocean monsoon precipitation from a speleothem from south Oman. J Geophys Res. doi:10.1029/2001JD001281

  • Chung CE, Ramanathan V (2006) Weakening of North Indian SST gradients and the monsoon rainfall in India and the Sahel. J Clim 19:2036–2045

    Article  Google Scholar 

  • Cole JE, Dunbar RB, McClanahan TR, Muthiga NA (2000) Tropical Pacific forcing of decadal SST variability in the Western Indian Ocean over the past two centuries. Science 287:617–619

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Article  Google Scholar 

  • Douville H, Royer J-F, Polcher J, Cox P, Gedney N, Stephenson DB, Valdes PJ (2000) Impact of CO2 doubling on the Asian summer monsoon: robust versus model dependent responses. J Meteor Soc Jpn 78:421–439

    Google Scholar 

  • Duan KQ, Wang NL, Li YF, Sun WZ (2000) Accumulation in Dasuopu ice core in Qinghai-Tibet plateau and solar activity. Chinese Sci Bull 45:1038–1042

    Article  Google Scholar 

  • Duan KQ, Yao TD, Thompson LG (2004) Low-frequency of southern Asian monsoon variability using a 295-year record from the Dasuopu ice core in the central Himalayas. Geophys Res Lett. doi:10.1029/2004GL020015

    Google Scholar 

  • Dykoski CA, Edwards RL, Cheng H, Yuan D, Cai Y, Zhang M, Lin Y, Qing J, An Z, Revenaugh J (2005) A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet Sci Lett 233:71–86

    Article  Google Scholar 

  • Fleitmann D, Burns SJ, Mudelsee M, Neff U, Kramers J, Mangini A, Matter A (2003) Holocene forcing of the Indian Monsoon recorded in a stalagmite from Southern Oman. Science 300:1737–1739

    Article  Google Scholar 

  • Fleitmann D, Burns SJ, Mangini A, Mudelsee M, Kramers J, Villa I, Neff U, Al-Subbary AA, Buettner A, Hippler D, Matter A (2007) Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat Sci Rev 26:170–188

    Article  Google Scholar 

  • Gadgil A, Dhorde A (2005) Temperature trends in twentieth century at Pune, India. Atmos Environ 39:6550–6556

    Article  Google Scholar 

  • Ganguly ND, Iyer KN (2009) Long-tern variations of surface air temperature during summer in India. Int J Climatol 29:735–746

    Article  Google Scholar 

  • Giannini A, Saravanan R, Chang P (2003) Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science 302:1027–1030

    Article  Google Scholar 

  • Grießinger J, Bräuning A, Helle G, Thomas A, Schleser G (2011) Late holocene Asian summer monsoon variability reflected by δ18O in tree-rings from Tibetan junipers. Geophys Res Let 38(L03701):1–5. doi:10.1029/2010GL045988

    Google Scholar 

  • Hiremath KM, Mandi PI (2004) Influence of the solar activity on the Indian Monsoon rainfall. New Astron 9:651–662

    Article  Google Scholar 

  • Hong YT, Jiang HB, Liu TS, Zhou LP, Beer J, Li HD, Leng XT, Hong B, Qin XG (2000) Response of climate to solar forcing recorded in a 6000-year δ18O time-series of Chinese peat cellulose. Holocene 10(1):1–7

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–470

    Article  Google Scholar 

  • Kumar KK, Rajagopalan B, Hoerling M, Bates G, Cane M (2006) Unraveling the mystery of Indian monsoon failure during El Niño. Science 314:115–119

    Article  Google Scholar 

  • Lean J (2000) Evolution of the sun’s spectral irradiance since the maunder minimum. Geophys Res Lett 27:2425–2428

    Article  Google Scholar 

  • Liang EY, Shao XM, Qin NS (2008) Tree-ring based summer temperature reconstruction for the source region of the Yangtze River on the Tibetan Plateau. Glob Planet Change 61:313–320

    Article  Google Scholar 

  • May W (2002) Simulated changes of the Indian summer monsoon under enhanced greenhouse gas conditions in a global timeslice experiment. Geophys Res Lett. doi:10.1029/2001GL013808

    Google Scholar 

  • Meehl GA, Washington WM (1993) South Asian summer monsoon variability in a model with doubled atmospheric carbon dioxide concentration. Science 260:1101–1104

    Article  Google Scholar 

  • Miller DL, Mora CI, Grissino-Mayer HD, Mock CJ, Uhle ME, Sharp Z (2006) Tree-ring isotope records of tropical cyclone activity. Proc Natl Acad Sci USA 103:14294–14297

    Article  Google Scholar 

  • Naidu CV, Durgalakshmi K, Krishna KM, Rao SR, Satyanarayana GC, Lakshminarayana P, Rao LM(2009)Is summer monsoon rainfall decreasing over India in the global warming era? J Geophys Res. doi:10.1029/2008JD011288

  • Neff U, Burns SJ, Mangini A, Mudelsee M, Fleitmann D, Matter A (2001) Strong coherence between solar variability and themonsoon in Oman between 9 and 6 kyr ago. Nature 411:290–293

    Article  Google Scholar 

  • Pant GB, Rupa Kumar K (1997) Climates of South Asia. Wiley, Chichester

    Google Scholar 

  • Parthasarathy B, Munot AA, Kothawale DR (1995) Contributions from Indian Institute of Tropical Meteorology. Research Report RR-065, Pune. Data from IRI Climate Data Library. http://ingrid.ldeo.columbia.edu/SOURCES/Indices/india/rainfall

  • Ramanathan V, Chung C, Kim D, Bettge T, Buja L, Kiehl JT, Washington WM, Fu Q, Sikka DR, Wild M (2005) Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc Natl Acad Sci USA 102:5326–5333

    Article  Google Scholar 

  • Roden JS, Lin G, Ehleringer JR (2000) A mechanistic model for the interpretation of hydrogen and oxygen isotope ratios in tree ring cellulose. Cosmochim Acta 64:21–35

    Article  Google Scholar 

  • Sachs JP, Sachse D, Smittenberg RH, Zhang Z, Battisti DS, Golubic S (2009) Southward movement of the Pacific intertropical convergence zone AD 1400–1850. Nat Geosci 2:519–525

    Article  Google Scholar 

  • Sano M, Sheshshayee MS, Managave S, Ramesh R, Sukumar R, Sweda T (2010) Climatic potential of δ18O of Abies spectabilis from the Nepal Himalaya. Dendrochronologia 28:93–98

    Article  Google Scholar 

  • Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Arizona Press, Tucson. (Reprinted 1995), pp xi–xiii, xv–xvii, 3–20

  • Thompson LG, Yao T, Mosley-Thompson E, Davis ME, Henderson KA, Lin PN (2000) A high-resolution millennial record of the South Asian monsoon from Himalayan ice cores. Science 289:1916–1919

    Article  Google Scholar 

  • von Rad U (1999) A 5000-yr record of climate change in varved sediments from the oxygen minimum zone off Pakistan, northern Arabian Sea. Quat Res 51:39–53

    Article  Google Scholar 

  • Wang Y, Cheng H, Kong X, Edwards RL, An Z, Wu J, Dykoski CA, He Y, Kelly MJ, Li X (2005) The holocene Asian Monsoon: links to solar changes and north. Science 308:854–857

    Article  Google Scholar 

  • Wilson R, Tudhope A, Brohan P, Briffa K, Osborn T, Tett S (2006) Two-hundred-fifty years of reconstructed and modeled tropical temperatures. J Geophys Res. doi:10.1029/2005JC003188

    Google Scholar 

  • **ang LY, Chen X, Li CH, Zheng JH (2007) The regional features of abrupt precipitation change in China in recent 55 years. Torre Rain Disasters 26:149–153 (in Chinese with English Abstract)

    Google Scholar 

  • Xu H, Hong YT, Lin QH, Zhu YX, Hong B, Jiang HB (2006) Temperature responses to quasi-100-yr solar variability during the past 6000 years based on δ18O of peat cellulose in Hongyuan, eastern Qinghai-Tibet plateau, China. Palaeogeogr Palaeoclimatol Palaeoecol 230:155–164

    Article  Google Scholar 

  • Xu H, Hong YT, Hong B, Zhu YX, Wang Y (2010) Influence of ENSO on multi annual temperature variations at Hongyuan, NE Qinghai-Tibet plateau: evidence from δ13C of spruce tree rings. Int J Clim 30:120–126

    Google Scholar 

  • Yadav RR, Singh J (2002) Tree-ring-based spring temperature patterns over the past four centuries in Western Himalaya. Q Res 57:299–305

    Article  Google Scholar 

  • Yadav RR, Park WK, Singh J, Dubey B (2004) Do the western Himalayas defy global warming? Geophys Res Lett. doi:10.1029/2004GL020201

    Google Scholar 

  • Yan Z, Ji J, Ye D (1990) Northern hemispheric summer climatic jump in the 1960s, part I—rainfall and temperature. Sci China Ser B 33:1092–1101

    Google Scholar 

  • Yuan D, Cheng H, Edwards RL, Dykoski CA, Kelly MJ, Zhang M, Qing J, Lin Y, Wang Y, Wu J, Dorale JA, An Z, Cai Y (2004) Timing, duration, and transitions of the last interglacial Asian monsoon. Science 304:575–578

    Article  Google Scholar 

  • Zhang DE, Li XQ, Liang YY (2003) Complement of the Chinese drought/flood index during 1993–2000. J Appl Meteorol Sci 14:379–383 (in Chinese)

    Google Scholar 

  • Zhang DQ, Qin DH, Hou SG, Kang SC, Ren JW (2004) Net accumulation rate of the east Rongbuk Glacier and Indian summer monsoon rainfall. J Glaciol Geocry 2:129–134 (in Chinese with English abstract)

    Google Scholar 

  • Zhang P, Cheng H, Edwards RL, Chen F, Wang Y, Yang X, Liu J, Tan M, Wang X, Liu J, An C, Dai Z, Zhou J, Zhang D, Jia J, ** L, Johnson KR (2008) A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science 322:940–942

    Article  Google Scholar 

  • Zhao H, Moore GWK (2006) Reduction in Himalayan snow accumulation and weakening of the trade winds over the Pacific since the 1840s. Geophys Res Lett 33:L17709. doi:10.1029/2006GL027339

    Article  Google Scholar 

Download references

Acknowledgments

We thank Thompson LG, Duan KQ, Zhang DQ, and Liang EY for providing Dasuopu dust concentration data, Dasuopu ice accumulation data, Rongbuk ice accumulation data, and Yushu tree ring widths, respectively. This work was supported by the projects (41073103; 41173122) funded by natural science foundation of China, and the project (KZCX2-EW-QN103) founded by Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Hong, Y. & Hong, B. Decreasing Asian summer monsoon intensity after 1860 AD in the global warming epoch. Clim Dyn 39, 2079–2088 (2012). https://doi.org/10.1007/s00382-012-1378-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1378-0

Keywords

Navigation