Log in

Simulation of paleoclimate over East Asia at 6 ka BP and 21 ka BP by a regional climate model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Using a regional climate model with detailed land surface processes (RegCM2), East Asian monsoon climates at 6 ka BP and 21 ka BP are simulated by prescribing vegetation and employing paleovegetation respectively in order to examine land surface effects on East Asian climate system and the potential mechanisms for climate change. The RegCM2 with a 120 × 120 km2 resolution has simulated the enlargement of the seasonal cycle of insolation, the temperature rising the whole year, and the reduction of perpetual snow in high latitudes at 6 ka BP. The simulation shows the East Asian summer monsoon strengthening, precipitation and PE increasing, and the monsoon rain belt shifting westwards and northwards. Effect of paleovegetation included in the modeling reduced surface albedo and caused an increase in the winter temperature, which led to weakening of the winter continental cold anticyclone over China. The results make the seasonal characteristics of simulated temperature changes in better agreement with the geological records, and are an improvement over previous simulations of Paleoclimate Modeling Intercomparison Project (PMIP). The RegCM2 simulated the 21 ka BP climate with lowered temperature throughout the year, and with precipitation reduced in most areas of East Asia (but increased in both the Tibetan Plateau and Central Asia). Low temperature over East Asia led to the strengthening of the East Asian winter monsoon and the shrinking of the summer monsoon. The effect of paleovegetation included in the experiment has enlarged the glacial climate influence in East Asia, which is closer to geological data than the PMIP simulations directly driven by insolation, glaciation and low CO2 concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson DM, Webb RS (1994) Ice-age tropics revised. Nature 364: 23–24

    Article  Google Scholar 

  • An ZS, Wu XH, Lu YC, Zhang DE, Sun XJ, Dong GY (1990) Preliminary study on the paleoenvironment changes in China in the recent 20 ky (in Chinese). In Liu DS (ed) Loess, Quaternary geology and Global changes II DS, Science Press, Bei**g, China, pp 1–20

  • An ZS, Wang SM, Wu XH, Chen MY, Sun DH, Liu XM, Wang FB, Li L, Sun YB, Zhou WJ, Zhou J, Liu XD, Lu HY, Zhang YX, Dong GR, Qiang XK (1999) Eolian evidence from the Chinese Loess Plateau: the onset of the Late Cenozoic Great Glaciation in the Northern Hemisphere and Qinghai-**zang Plateau uplift forcing. Sci China (Ser D) 42 (3): 258–271

    Google Scholar 

  • Bard E, Rostek F, Sonzogni C, Rahmstorf S, Ganopolski A (1998) Comparing temperatures of the glacial ocean quantified with the alkenone method and simulated by numerical models. PAGES Open Science Conference Abstracts, pp 20

  • Beck J, Edwards WRL, Ito E, Taylor FW, Recy J, Rougerie F, Joannot P, Henin C (1992) Sea-surface temperature from coral skeletal strontium/calcium ratios. Sci 257: 644–647

    Google Scholar 

  • Berger AL (1978) Long-term variations of daily insolation and Quaternary climatic changes. J Atmos Sci 35: 2362–2367

    Article  Google Scholar 

  • Brovkin V, Bendtsen J, Claussen M, Ganopolski A, Kubatzki C, Petoukhov V, Andreev A (2002) Carbon cycle, vegetation, and climate dynamics in the Holocene: experiments with the CLIMBER-2 model. Global Biogeochem Cycles 16: 1139, doi:10.1029/2001GB001662

  • Chen X, Yu G, Liu J (2002) Simulation of the Holocene Optimum climate in East Asia and its temperature change mechanism (in Chinese). Sciences in China (Ser. D) 32: 335–345

  • Clark PU, Alley RB, Pollard D (1999) Northern Hemispere ice-sheet influences on global climate change. Sci 286: 1104–1111

    Article  CAS  Google Scholar 

  • Claussen M, Kubatzki C, Brovkin V, Ganopolski A, Hoelzmann P, Pachur HJ (1999) Simulation of an abrupt change in Sahara vegetation in the mid-Holocene. Geophys Res Lett 26: 2037–2040

    Article  Google Scholar 

  • Climate/Long-range Investigation, Map** and Prediction (CLIMAP) members (1981) Seasonal reconstruction of the earth’s surface at the last glacial maximum. Geol Soc Am Map Chart Ser MC-36. Geological Society America Boulder, Colorado, USA

  • COHMAP Members (1988) Climatic changes of the last 18,000 years: observations and model simulations. Science 241: 1043–1052

    Google Scholar 

  • Crowley TJ, Baum SK (1997) Effect of vegetation on an ice-age climate model simulation. J Geophys Res102: 16,463—16,480

    Google Scholar 

  • Crucifix M, Loutre MF, Tulkens P, Fichefet T, Berger A (2002) Climate evolution during the Holocene: a study with an Earth system model of intermediate complexity. Clim Dyn 19: 43–60

    Article  Google Scholar 

  • de Noblet N, Braconnot P, Joussaume S, Masson V (1996) Sensitivity of simulated Asian and African summer monsoons to orbitally induced variations in insolation 126, 115 and 6  kBP. Clim Dyn 12: 589-603

    Article  Google Scholar 

  • de Vernal A, Guiot J, Turon JL (1993) Late and postglacial paleoenvironments of the Gulf of St. Lawrence: marine and terrestrial palynological evidence. Geogr Physiq Quat 47: 167–180

    Google Scholar 

  • Dickinson RE, Sellers AH, Kennedy PJ (1993) Biosphere atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR Community Climate Model. NCAR Tech Note, NCAR/TN-387+STR, National Center for Atmosphere Research Boulder, Colorado, USA

  • Dong BW, Valdes PJ, Hall NMJ (1996) The changes of Monsoonal climates due to earth’s orbital perturbations and ice age boundary conditions. Paleoclimates 1: 203–240

    Google Scholar 

  • Farrera I, Harrison SP, Prentice IC, Ramstein G, Guiot J, Bartlein PJ, Bonnefille R, Bush M, Cramer W, Grafenstein UV, Holmgren K, Hooghiemstra H, Hope G, Jolly D, Lauritzen SE, Ono Y, Pinot S, Stute M and Yu G (1999) Tropical climates at the Last Glacial Maximum: a new synthesis of terrestrial paleoclimate data. I. Vegetation, lake-levels and geochemistry. Clim Dyn 15: 823–856

    Article  Google Scholar 

  • Foley JA, Kutzbach JE, Coe MT, Levis S (1994) Feedbacks between climate and boreal forests during the Holocene epoch. Nature 371(1): 52–54

    Article  Google Scholar 

  • Giorgi F, Marinucci MR, Bates GT (1993a) Development of a second-generation regional climate model (RegCM2). Part I: boundary-layer and radiative transfer processes. Mon Weather Rev 121: 2794–2813

    Article  Google Scholar 

  • Giorgi F, Marinucci MR, Bates GT, Gerardo DC (1993b) Development of a second-generation regional climate model (RegCM2). Part II: convective processes and assimilation of lateral boundary conditions. Mon Weather Rev 121: 2814–2831

    Article  Google Scholar 

  • Guilderson TP, Fairbanks RG, Rubenstone JL (1994) Tropical temperature variations since 20 000 years ago: modulating interhemispheric climate change. Sci 263: 663–665

    Google Scholar 

  • Harrison SP, Yu G, Ta kahara H, Prentice IC (2001) Paleovegetation: diversity of temperate plants in east Asia. Nature 413: 129–130

    Article  CAS  PubMed  Google Scholar 

  • Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the earth’s orbit: pacemaker of the ice ages. Sci 194: 1121–1132

    Google Scholar 

  • Hong YT, Liu DS, Jiang HB, Zhou L, Beer J, Zhu YX, Leng XT, Li HD, Qin XG, Hong B, Wang Y, Lin QH, Zeng YQ (1999) Peat oxygen-isotope evidence of climate changes driven by insolation (in Chinese). Sci China (Ser D) 29: 527–531

    Google Scholar 

  • Hostetler SW, Giorgi F, Bates GT, Bartlein PJ (1994) Lake-atmosphere feedbacks associated with paleolakes bonneville and lahontan. Sci 263: 665–668

    Google Scholar 

  • Jia YL, Shi YF, Wang SM, Jiang XZ, Li SJ, Wang AJ, Li XS (2001) Lake-expanding events in the Tibetan Plateau since 40 ka BP Sci China (Ser. D) 44 (Supp.): 302–315

  • Joussaume S, Taylor K (1995) Status of the paleoclimate modeling intercomparison project (PMIP). In: Proc First Int AMIP Sci Conf (Monterey, California, USA, 15–19 May 1995). World Meteorology Organization, Geneva. 92: 425–430

  • Joussaume S, Taylor KE, Braconnot P, Mitchell JFB, Kutzbach JE, Harrison SP, Prentice IC, Broccoli AJ, Abe-Ouchi A, Bartlein PJ, Bonfils C, Dong B, Guiot J, Herterich K, Hewitt CD, Holly D, Kim JW, Kislov A, Kitoh A, Loutre MF, Masson V, McAvaney B, McFarlane N, de Noblet N, Peltier WR, Peterschmitt JY, Pollard D, Rind D, Royer JF, Schlesinger ME, Syktus J, Thompson S, Valdes P, Vettoretti G, Webb RS, Wyputta U (1999) Monsoon changes for 6000 years ago: results of 18 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP). Geophys Res Lett 26: 859–862

    Article  Google Scholar 

  • Kubatzki C, Claussen M (1998) simulation of the global bio-geophysical interactions during the last glacial maximum. Clim Dyn 14: 461–471

    Article  Google Scholar 

  • Kutzbach JE, Guetter PJ, Behling P, Selin R (1993) Simulated climatic changes: Results of the COHMAP climate-model experiments. In: Wright HE, Kutzbach JE, Webb T, Rudiman WF, Street-Perrott FA, Bartlein PJ (eds), Global climates since the Last Glacial Maximum. University of Minnesota Press, Minneapolis, USA, pp 24–93

  • Kutzbach JE, Bonan G, Foley J, Harrison SP (1996) Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the early to middle Holocene. Nature 384: 623–626

    Article  CAS  Google Scholar 

  • Kutzbach JE, Gallimore R, Harrison SP, Behling P, Selin R, Laarif F (1998) Climate and biome simulation for the past 21,000 years. Quat Sci Rev 17: 473–506

    Article  Google Scholar 

  • Liu DS, Zhang XS, **ong SF, Qin XG (1999) Qinghai-**zang plateau glacial environment and global cooling (in Chinese). Quat Sci 19: 385–396

    Google Scholar 

  • Liu H, Wu GX (1997) Impacts of land surface on climate of July and onset of summer monsoon: a study with an AGCM plus SsiB. Adv Atmos Sci 14(3): 290–308

    Google Scholar 

  • Liu XD, An ZS, Wu XH, Paul JV, Bu WD (1997) East Asian paleoclimate of the Last Glacial Maximun in an atmospheric general circulation model and from geological records. Proc 30th. Int Geol Congr 21: 156–171

    Google Scholar 

  • Masson V, Joussaume S, Pinot S, Ramstein G (1998) Impact of parameterization on simulated winter mid-holocene and last glacial maximum climatic changes in the Northern Hemisphere. J Geophys Res 103(D8): 8935–8946

    Article  Google Scholar 

  • Meissner KJ, Weaver AJ, Matthews HD, Cox PM (2003) The role of land surface dynamics in glacial inception: a study with the UVic Earth System Model. Clim Dyn 21: 515–537

    Article  Google Scholar 

  • Meng XW, Du DW, Liu YG, Liu ZX (2002) Molecular biomarker record of paleocenaographic environment in the east China sea during the last 35,000 years. Sci China (Ser D) 45(2): 184–192

    Google Scholar 

  • Noah SD, Lisa CS (2002) Global climate sensitivity to land surface change: the Mid Holocene revisited. Geophys Res Lett 29 (10), 10.1029/2002GL014880

    Google Scholar 

  • Prentice IC, Sykes MT, Lautenschlager M, Harrison SP, Denissenko O, Bartlein PJ (1993) Modelling global vegetation patterns and terrestrial carbon storage at the last glacial maximum. Global Ecol Biogeog Lett 3: 67–76

    Google Scholar 

  • Peltier WR (1994) Ice age paleotopography. Sci 265: 195–201

    Google Scholar 

  • Qian YF, Zheng YQ, Zhang Y, Miao MQ (2003) Responses of China’s summer monsoon climate to snow anomaly over the Tibetan Plateau. Int J Climatol 23 (6): 593–613

    Article  Google Scholar 

  • Qiu GQ, Cheng GD (1995) Permafrost in China: past and present. Permafrost Perigl 6: 3–22

    Google Scholar 

  • Renssen H, Isarin RFB, Vandenberghe J, Lautenschlager M, Schlese U (2000) Permafrost as a critical factor in paleoclimate modelling: the Younger Dryas case in Europe. Earth Planet Sci Lett 176: 1–5

    Article  CAS  Google Scholar 

  • Renssen H, Isarin RFB, Jacob D, Podzun R, Vandenberghe J (2001) Simulation of the Younger Dryas climate in Europe using a regional climate model nested in an AGCM: preliminary results. Global Planet Change 30: 41—57

    Article  Google Scholar 

  • Shi YF (2002) Characteristics of late Quaternary monsoonal glaciation on the Tibetan Plateau and in East Asia. Quat Int 97-98: 79–91

    Google Scholar 

  • Shi YF, Kong ZC, Wang SM, Tang LY, Wang FB, Yao TD, Zhao PY, Shi SH (1993) Mid-Holocene climates and environments in China. Global Planet Change 7: 219–233

    Article  Google Scholar 

  • Shi YF, Kong ZC, Wang SM, Yao TD (1992) Basic features of the Holocene warm climate and environment in China (in Chinese). In: Shi Yafeng, Kong Zhaochen (eds) the Holocene warm climate and environment in China. Ocean Press, Bei**g, China

  • Shi YF, Zhen BX, Yao TD (1997) Glaciers and environment of the Tibetan Plateau in the Last Glacial Maximum (in Chinese). J Glaciol Geocryol 19: 97–113

    Google Scholar 

  • Texier D, Noblet ND, Harrison SP, Haxeltine A, Jolly D, Joussaume S, Laarif F (1997) Quantifying the role of biosphere-atmosphere feedbacks in climate change: coupled model simulations for 6 000 years BP and comparison with paleodata for northern Eurasia and northern Africa. Clim Dyn 13: 865–883

    Article  Google Scholar 

  • Wang HJ (1999) Role of vegetation and soil in the Holocene megathermal climate over China. J Geophys Res 104 (D8): 9361–9367

    Article  Google Scholar 

  • Wang HJ (2001) Paleoclimate modeling and Climate models (in Chineses). Quat Sci 21:147–151

    Google Scholar 

  • Wang PX (1999) Response of Western Pacific marginal seas to glacial cycles: paleoceanographic and sedimentological features. Mar Geol 156: 5–39

    Article  Google Scholar 

  • Webb RS, Rind DH, Lehman SJ, Healy R, Sigman D (1997) Influence of ocean heat transport on the climate of the Last Glacial Maximum. Nature 385: 695–699

    Article  CAS  Google Scholar 

  • Wright JR, Kutzbach JE, Webb T, Ruddiman WF, Street-Perrott FA, Bartlein PJ (eds.) (1993) Global climates since the Last Glacial Maximum. University of Minnesota Press, Minneapolis, USA, pp 569

  • Xue B, Yu G (2000) Changes of atmospheric circulation since the last interstadial as indicated by the lake-status record in China. Acta Geol Sinica 74: 836–845

    Google Scholar 

  • Yu G, Harrison SP (1996) An evaluation of the simulated water balance of Eurasia and northern Africa at 6000 yr BP using lake status data. Clim Dyn 12: 723–735

    Article  Google Scholar 

  • Yu G, Wang SM (2000) Climatic dynamic mechanism for the vegetation migration of the Last Glacial Maximum in China (in Chinese). J Paleobiol 17: 147-154

    Google Scholar 

  • Yu G, Sun XJ, Qin BQ, Song CQ, Li HY, Prentice LC, Harrison SP (1998) Pollen-based reconstruction of vegetation patterns of China in mid-Holocene. Sci China (Ser D) 41(2): 130–136

    Google Scholar 

  • Yu G, Chen X, Ni J, Cheddadi R, Guiot J, Han H, Harrison SP, Huang C, Ke M, Kong Z, Li S, Li W, Liew P, Liu G, Liu J, Liu Q, Liu KB, Prentice IC, Qui W, Ren G, Song C, Sugita S, Sun X, Tang L, Campo EV, **a Y, Xu Q, Yan S, Yang X, Zhao J and Zheng Z (2000a) Paleovegetation of China: a pollen date-based synthesis for the mid-Holocene and Last Glacial Maximum. J Biogeog 27: 635–664

    Article  Google Scholar 

  • Yu G, Xue B,Wang SM, Liu J (2000b) Lake records and the LGM climate in China. Chinese Sci Bull 45: 250–255

    Google Scholar 

  • Yu G, Xue B, Liu J, Chen X, Zheng YQ (2001a) Lakes evolution in China and paleoclimatic dynamics. Meteorological Press, Bei**g, China, pp 1–196

  • Yu G, Chen X, Liu J, Wang SM (2001b) Preliminary study on LGM climate simulation and the diagnosis for East Asia. Chinese Sci. Bull. 46: 364-368

    Google Scholar 

  • Yu G, Xue B, Liu J, Chen X (2003) LGM lake records from China and analysis of the climate dynamics. Global Planet Change 38: 223-256

    Article  Google Scholar 

  • Zhang LS (editor) (1993) Studies on the historical evolution of human environment in China (I) (in Chinese). Ocean Press, Bei**g, China, pp 83-103

  • Zheng YQ, Miao MQ, Qian YF (1999) Turbulence kinetic energy closure scheme applied into regional climate modeling (in Chinese). Acta Meteorol Sinica 57: 641–650

    Google Scholar 

  • Zheng YQ, Yu G, Qian YF, Miao MQ, Zeng XM, Liu HQ (2002a) Simulations of regional climatic effects of vegetation change in China. Q J Roy Meteorol Soc 128: 2089–2115

    Article  Google Scholar 

  • Zheng YQ, Qian YF, Yu G, Gui QJ, Zeng XM, Liu HQ (2002b) Simulations of the effects of soil temperature and humidity disturbance on regional climate of China. Meteorol Atmos Phys 81: 85–102

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Prof. John E. Kutzbach, Dr. P. Behling and Dr. S. Rauscher for providing NCAR (National Center for Atmospheric Research, USA) CCM1 results for 0 ka /6 ka /21 ka BP. The authors would like to thank Prof. John E. Kutzbach and an anonymous reviewer for their constructive comments for improvement of an earlier version of this study. This work is funded jointly by the Natural Science Foundation of China (NSFC 40201048), the National Key Project for Basic Research on the Processes of Lake Eutrophication and the Mechanism of Cyanobacterial Blooming (2002CB412301), the Innovation Key Project of Chinese Academy of Sciences (CAS KZCX1-SW-12), and fundings from CAS KZCX3-SW-321, NSFC 40231011 and NSFC 40205012. Finally we are indebted to NCAR for the RegCM2 Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Q. Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Y.Q., Yu, G., Wang, S.M. et al. Simulation of paleoclimate over East Asia at 6 ka BP and 21 ka BP by a regional climate model. Climate Dynamics 23, 513–529 (2004). https://doi.org/10.1007/s00382-004-0452-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-004-0452-7

Keywords

Navigation