Log in

Sensitivity of the upper ocean temperature and circulation in the equatorial Pacific to solar radiation penetration due to phytoplankton

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Solar radiation penetration in the upper ocean is strongly modulated by phytoplankton, which impacts the upper ocean temperature structure, especially in the regions abundant with phytoplankton. In the paper, a new solar radiation penetration scheme, based on the concentration of chlorophyll-a, was introduced into the LASG/IAP (State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics) Climate system Ocean Model (LICOM). By comparing the simulations using this new scheme with those using the old scheme that included the constant e-folding attenuation depths in LICOM, it was found that the sea surface temperature (SST) and circulation in the central and eastern equatorial Pacific were both sensitive to the amount of phytoplankton present. Distinct from other regions, the increase of chlorophyll-a concentration would lead to SST decrease in the central and eastern equatorial Pacific. The higher chlorophyll-a concentration at the equator in comparison to the off-equator regions can enlarge the subsurface temperature gradient, which in turn strengthens the upper current near the equator and induces an enhancing upwelling. The enhancing upwelling can then lead to a decrease in the SST in the central and eastern equatorial Pacific. The results of these two sensitive experiments testify to the fact that the meridional gradient in the chlorophyll-a concentration can result in an enhancement in the upper current and a decrease in the SST, along with the observation that a high chlorophyll-a concentration at the equator is one of the predominant reasons leading to a decrease in the SST. This study points out that these results can be qualitatively different simply because of the choice of the solar radiation penetration schemes for comparison. This can help explain previously reported contradictory conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen, D., A. J. Busalacchi, and L. M. Rothstein, 1994: The roles of vertical mixing, solar radiation, and wind stress in a model simulation of the sea surface temperature seasonal cycle in the tropical Pacific Ocean. J. Geophys. Res., 99, 20345–20359.

    Article  Google Scholar 

  • Darnell, W. L., W. F. Staylor, N. A., Ritchey, S. K. Gupta, and A. C. Wilber, 1996: Surface Radiation Budget: A Long-term Global Dataset of Shortwave and Longwave Fluxes. EOS, Trans. Amer. Geophys. Union., Electron. Suppl., Feb. 27, 1996. [Available online from http://www.agu.org.eoselec/95206e.html].

  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155.

    Article  Google Scholar 

  • Gibson, J. K., P. Kållberg, S. Uppala, A. Hernandez, A. Nomura, and E. Serrano, 1997: ERA description. ECMWF Reanalysis Project Report Series No. 1, European Centre for Medium-Range Weather Forecasts, Reading, 72pp.

    Google Scholar 

  • Gildor, H., A. H. Sobel, M. A. Cane, and R. N. Sambrotto, 2003: A role for ocean biota in tropical intraseasonal atmospheric variability. Geophys. Res. Lett., 30, 1460, doi: 10.1029/2002GL016759.

    Article  Google Scholar 

  • Griffies, S. M., R. C. Harrison, R. C. Pacanowski, and A. Rosati, 2003: A technical guide to MOM4. GFDL Ocean Group Tech. Rep., 5, 295pp.

  • Jerlov, N. G., 1968: Optical Oceanography. Elsevier Press, 194pp.

  • Latif, M., and Coauthors, 2001: ENSIP: The El Niño Simulation Intercomparison Project. Climate Dyn., 18, 255–276.

    Article  Google Scholar 

  • Liu, H., Y. Q. Yu, W. Li, and X. H. Zhang, 2004a: Manual for LASG/IAP Climate System Ocean Model (LICOM1.0). Science Press, Bei**g, 1–28. (in Chinese)

    Google Scholar 

  • Liu, H., X. H. Zhang, W. Li, Y. Q. Yu, and R. C. Yu, 2004b: A eddy-permitting oceanic general circulation model and its preliminary evaluations. Adv. Atmos. Sci., 21, 675–690.

    Google Scholar 

  • Manizza, M., C. Le Quéré, A. J. Watson, and E. T. Buitenhuis, 2005: Bio-optical feedbacks among phytoplankton, upper ocean physics and sea-ice in a global model. Geophys. Res. Lett., 32, L05603, doi: 10.1029/2004GL020778.

  • Marzeion, B., A. Timmermann, R. Murtugudde, and F. F. **, 2005: Bio-physical feedbacks in the tropical Pacific. J. Climate, 18, 58–70.

    Article  Google Scholar 

  • Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over the tropical Pacific in coupled ocean-atmosphere general circulation models. Mon. Wea. Rev., 123, 2825–2838.

    Article  Google Scholar 

  • Morel, A., 1988: Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters). J. Geophys. Res., 93, 10749–10768.

    Article  Google Scholar 

  • Morel, A., and D. Antoine, 1994: Heating rate within the upper ocean in relation to its bio-optical state. J. Phys. Oceanogr., 24, 1652–1665.

    Article  Google Scholar 

  • Murtugudde, R., J. Beauchamp, C. R. McClain, M. Lewis, and A. J. Busalacchi, 2002: Effects of penetrative radiation on the upper tropical ocean circulation. J. Climate, 15, 470–486.

    Article  Google Scholar 

  • Nakamoto, S., S. P. Kumar, J. M. Oberhuber, J. Ishizaka, K. Muneyama, and R. Frouin, 2001: Response of the equatorial Pacific to chlorophyll pigment in a mixed layer isopycnal ocean general circulation model. Geophys. Res. Lett., 28, 2021–2024.

    Article  Google Scholar 

  • Ohlmann, J. C., 2003: Ocean radiant heating in climate models. J. Climate, 16, 1337–1351.

    Google Scholar 

  • Pacanowski, R. C., and S. G. H. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11, 1443–1451.

    Article  Google Scholar 

  • Paulson, C. A., and J. J. Simpson, 1977: Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7, 952–956.

    Article  Google Scholar 

  • Rosati, A., and K. Miyakoda, 1988: A general circulation model for upper ocean circulation. J. Phys. Oceanogr., 18, 1601–1626.

    Article  Google Scholar 

  • Röske, F., 2001: An atlas of surface fluxes based on the ECMWF Re-Analysis—A climatological dataset to force global ocean general circulation models. Report No. 323, MPI, Hamburg, 31pp.

    Google Scholar 

  • Schneider, E. K., and Z. X. Zhu, 1998: Sensitivity of the simulated annual cycle of sea surface temperature in the equatorial Pacific to sunlight penetration. J. Climate, 11, 1932–1950.

    Article  Google Scholar 

  • Shell, K. M., R. Frouin, S. Nakamoto, and R. C. J. Somerville, 2003: Atmospheric response to solar radiation absorbed by phytoplankton. J. Geophys. Res., 108, 4445, doi: 10.1029/2003JD003440.

    Article  Google Scholar 

  • Siegel, D. A., J. C. Ohlmann, L. Washburn, R. R. Bidigare, C. Nosse, E. Fields, and Y. Zhou, 1995: Solar radiation, phytoplankton pigments and radiant heating of the equatorial Pacific warm pool. J. Geophys. Res., 100, 4885–4891.

    Article  Google Scholar 

  • Strutton, P., and F. P. Chavez, 2004: Biological heating in the equatorial Pacific: Observed variability and potential for real-time calculation. J. Climate, 17, 1097–1109.

    Article  Google Scholar 

  • Sweeney, C., A. Gnanadesikan, S. M. Griffies, M. J. Harrison, A. J. Rosati, and B. L. Samuels, 2005: Impacts of shortwave penetration depth on large-scale ocean circulation and heat transport. J. Phys. Oceanogr., 35, 1103–1119.

    Article  Google Scholar 

  • Timmermann, A., and F. F. **, 2002: Phytoplankton influences on tropical climate. Geophys. Res. Lett., 29, 191–194.

    Google Scholar 

  • Wetzel, P., E. Maier-Reimer, M. Botzet, J. Jungclaus, N. Keenlyside, and M. Latif, 2006: Effects of ocean biology on the penetrative radiation in a coupled climate model. J. Climate, 19, 3973–3987.

    Article  Google Scholar 

  • Wu, F. H., H. L. Liu, W. Li, and X. H. Zhang, 2005: Effect of adjusting vertical resolution on the eastern equatorial Pacific cold tongue. Acta Oceanologica Sinica, 24, 1–12.

    Article  Google Scholar 

  • Zhang, X. H., Y. Q. Yu, and H. L. Liu, 2003: The development and application of the oceanic circulation models, Part I: The global oceanic general circulation models. Chinese J. Atmos. Sci., 27, 607–617. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Hailong  (刘海龙).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, P., Liu, H. & Zhang, X. Sensitivity of the upper ocean temperature and circulation in the equatorial Pacific to solar radiation penetration due to phytoplankton. Adv. Atmos. Sci. 24, 765–780 (2007). https://doi.org/10.1007/s00376-007-0765-7

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-007-0765-7

Key words

Navigation