Log in

Deep 3D-LBP: CNN-based fusion of shape modeling and texture descriptors for accurate face recognition

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The key challenge of face recognition is to develop an effective feature representations for reducing intrapersonal variations while enlarging interpersonal differences. In this paper, we show that the face recognition accuracy may be enhanced with the combination of a 3D model-based alignment, and an LBP descriptor constructed on the 3D mesh. First, 3D face data are reconstructed from 2D images that aim to normalize the input image. Then, shape and texture features on the mesh are extracted using the mesh local binary patterns: mesh-LBP. With the use of the extracted 3D features and a simple CNN architecture, much higher accuracy rates can be achieved. We achieve the accuracy of 99.59% on the widely used labeled Faces in the Wild dataset. On YouTube Faces dataset, the proposed method achieves 94.97%, despite using a small training dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chakraborty, S., Thounaojam, D. M., Sinha, N.: A shot boundary detection technique based on visual colour information. Multimed. Tools Appl. 80 1–16 (2020)

  2. Singh, A., Thounaojam, D.M., Chakraborty, S.: A novel automatic shot boundary detection algorithm: robust to illumination and motion effect. Signal, Image and Video Processing 14 1–9 (2019)

  3. L. Ferreira, L. A. da Silva Cruz, P. Assuncao, Towards key-frame extraction methods for GAN video: a review, EURASIP J. Image Video Process. (1). 28 (2016).

  4. Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Martinez-Gonzalez, P., Garcia-Rodriguez, J.: A survey on deep learning techniques for image and video semantic segmentation. Appl. Soft Comput. 70, 41–65 (2018)

    Article  Google Scholar 

  5. Hassaballah, M., Aly, S.: Face recognition: challenges, achievements and future directions. IET Comput. Vision 9(4), 614–626 (2015)

    Article  Google Scholar 

  6. Anil, J., Suresh, L.P.: Literature survey on face and face expression recognition. In: International Conference on Circuit, Power and Computing Technologies (ICCPCT), IEEE, pp. 1–6 (2016)

  7. Anwarul, S., Dahiya, S.: A comprehensive review on face recognition methods and factors affecting facial recognition accuracy. In: Proceedings of ICRIC 2019, Springer, pp. 495–514 (2020)

  8. Abdurrahim, S.H., Samad, S.A., Huddin, A.B.: Review on the effects of age, gender, and race demographics on automatic face recognition. Vis. Comput. 34(11), 1617–1630 (2018)

    Article  Google Scholar 

  9. Yin, Y., Jiang, S., Robinson, J.P., Fu, Y.: Dual-attention GAN for large-pose face frontalization. ar**v preprint https://arxiv.org/abs/2002.07227.

  10. Cao, J., Hu, Y., Zhang, H., He, R., Sun, Z.: Towards high fidelity face frontalization in the wild. Int. J. Comput. Vis. 128 1–20 (2019)

  11. Ferrari, C., Lisanti, G., Berretti, S., Del Bimbo, A.: Effective 3D based frontalization for unconstrained face recognition. In: 23rd International Conference on Pattern Recognition (ICPR). IEEE, pp. 1047–1052 (2016)

  12. Sagonas, C., Panagakis, Y., Zafeiriou, S., Pantic, M.: Robust statistical face frontalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3871–3879 (2015)

  13. Huang, R., Zhang, S., Li, T., He, R.: Beyond face rotation: global and local perception GAN for photorealistic and identity preserving frontal view synthesis. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2439–2448 (2017)

  14. Zhang, S., Miao, Q., Zhu, X., Chen, Y., Lei, Z., Wang, J., et al.: Pose-weighted GAN for photorealistic face frontalization. In: 2019 IEEE International Conference on Image Processing (ICIP). IEEE, pp. 2384–2388 (2019)

  15. Wang, S., Zou, Y., Min, W., Wu, J., **ong, X. (2021). Multi-view face generation via unpaired images. The Vis. Comput., 1–16.

  16. Mahamdioua, M., Benmohammed, M.: Automatic adaptation of SIFT for robust facial recognition in uncontrolled lighting conditions. IET Comput. Vision 12(5), 623–633 (2018)

    Article  Google Scholar 

  17. Arya, K., Rajput, S.S., Upadhyay, S.: Noise-robust low-resolution face recognition using SIFT features. Comput. Intel. Theor. Appl. Future Dir. 645–655 (2019)

  18. Sushama, M., Ra**ikanth, E.: Face recognition using DRLBP and SIFT feature extraction. In: International Conference on Communication and Signal Processing (ICCSP) 994–999 (2018).

  19. Gupta, S., Thakur, K., Kumar, M.: 2d-human face recognition using SIFT and SURF descriptors of face’s feature regions. Vis. Comput. 37 1–10 (2020).

  20. Wang, Y., Li, M., Zhang, C., Chen, H., Lu, Y.: Weighted-fusion feature of MB-LBPUH and HoG for facial expression recognition. Soft. Comput. 24(8), 5859–5875 (2020)

    Article  Google Scholar 

  21. Voronov, V., Strelnikov, V., Voronova, L., Trunov, A., Vovik, A.: Faces 2d-recognition and identification using the hog descriptors method. In: Conference of Open Innovations Association, FRUCT, no. 24, FRUCT, pp. 783–789 (2019)

  22. Nhat, H.T.M., Hoang, V.T.: Feature fusion by using lbp, hog, gist descriptors and canonical correlation analysis for face recognition. In: 2019 26th International Conference on Telecommunications (ICT), IEEE, pp. 371–375 (2019)

  23. Xu, J., Xue, X., Wu, Y., Mao, X.: Matching a composite sketch to a photographed face using fused HOG and deep feature models. Vis. Comput. 37(4), 765–776 (2021)

    Article  Google Scholar 

  24. Zhang, H., Qu, Z., Yuan, L., Li, G.: A face recognition method based on LBP feature for CNN. In: IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). IEEE, pp. 544–547 (2017)

  25. Shi, L., Wang, X., Shen, Y.: Research on 3d face recognition method based on lbp and svm, Optik 220, 165157 (2020)

  26. Ren, X., Guo, H., Di, C., Han, Z., Li, S.: Face recognition based on local Gabor binary patterns and convolutional neural network. In: International Conference in Communications, Signal Processing, and Systems, Springer, pp. 699–707 (2016)

  27. Zhang, B., Liu, G., **e, G.: Facial expression recognition using LBP and LPQ based on Gabor wavelet transform. In: 2016 2nd IEEE International Conference on Computer and Communications (ICCC), IEEE, , pp. 365–369 (2016)

  28. Chengeta, K., Viriri, S.: Facial expression recognition: A survey on local binary and local directional patterns. In: International Conference on Computational Collective Intelligence, Springer, pp. 513–522 (2018)

  29. Oloyede, M.O., Hancke, G.P., Myburgh, H.C.: A review on face recognition systems: recent approaches and challenges. Multimedia Tools and Applications 79(37), 27891–27922 (2020)

    Article  Google Scholar 

  30. Kortli, Y., Jridi, M., Al Falou, A., Atri, M.: Face recognition systems: a survey, Sensors 20(2), 342 (2020)

  31. Cheng, Y., Jiao, L., Cao, X., Li, Z.: Illumination-insensitive features for face recognition. Vis. Comput. 33 (11) (2017) 1483–1493.

  32. Ahmed, S.B., Ali, S.F., Ahmad, J., Adnan, M., Fraz, M.M.: On the frontiers of pose invariant face recognition: a review. Artif. Intell. Rev. 53(4), 2571–2634 (2020)

    Article  Google Scholar 

  33. Napoleon, T., Alfalou, A.: Pose invariant face recognition: 3d model from single photo. Opt. Lasers Eng. 89, 150–161 (2017)

    Article  Google Scholar 

  34. Juefei-Xu, F., Luu, K., Savvides, M.: Spartans: Single-sample periocular-based alignment-robust recognition technique applied to non-frontal scenarios. IEEE Trans. Image Process. 24(12), 4780–4795 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ding, C., Tao, D.: Robust face recognition via multimodal deep face representation. IEEE Trans. Multimedia 17(11), 2049–2058 (2015)

    Article  Google Scholar 

  36. Liang, J., Tu, H., Liu, F., Zhao, Q., Jain, A.K.: 3d face reconstruction from mugshots: Application to arbitrary view face recognition. Neurocomputing 410, 12–27 (2020)

    Article  Google Scholar 

  37. Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J., et al.: Recent advances in convolutional neural networks. Pattern Recogn. 77, 354–377 (2018)

    Article  Google Scholar 

  38. Finizola, J.S., Targino, J.M., Teodoro, F.G., Lima, C.A.: Comparative study between deep face, autoencoder and traditional machine learning techniques aiming at biometric facial recognition. In: 2019 International Joint Conference on Neural Networks (IJCNN), IEEE, pp. 1–8 (2019)

  39. Guo, G., Zhang, N.: A survey on deep learning based face recognition. Comput. Vis. Image Underst. 189102805 (2019)

  40. Chihaoui, M., Elke , A., Bellil, W., Ben Amar, C.: A survey of 2d face recognition techniques. Computers 5 (4) 21 (2016)

  41. Zhou, S., **ao, S.: 3d face recognition: a survey. HCIS 8(1), 35 (2018)

    Google Scholar 

  42. Trigueros, D. S., Meng, L., Hartnett, M.: Face recognition: from traditional to deep learning methods. ar**v preprint https://arxiv.org/abs/1811.00116.

  43. Li, H., Huang, D., Lemaire, P., Morvan, J.-M., Chen, L.: Expression robust 3d face recognition via mesh-based histograms of multiple order surface differential quantities 3053–3056 (2011)

  44. Berretti, S., Werghi, N., Bimbo, A.D., Pala, P.: Matching 3d face scans using interest points and local histogram descriptors. Comput. Graph. 37(5), 509–525 (2013)

    Article  Google Scholar 

  45. Abbad, A., Abbad, K., Tairi, H.: 3d face recognition: Multi-scale strategy based on geometric and local descriptors. Comput. Electr. Eng. 70, 525–537 (2018)

    Article  Google Scholar 

  46. Deng, X., Da, F., Shao, H., Jiang, Y.: A multi-scale three-dimensional face recognition approach with sparse representation-based classifier and fusion of local covariance descriptors. Comput. Electric. Eng. 85, 106700 (2020).

  47. Zhang, Z., Da, F., Yu, Y.: Data-free point cloud network for 3d face recognition, ar**v. ar**v- 1911 (2019)

  48. Hu, G., Yan, F., Chan, C.-H., Deng, W., Christmas, W., Kittler, J., Robertson, N. M.: Face recognition using a unified 3d morphable model. In: European Conference on Computer Vision, pp. 73–89. Springer (2016)

  49. Koppen, P., Feng, Z.-H., Kittler, J., Awais, M., Christmas, W., Wu, X.-J., Yin, H.-F.: Gaussian mixture 3d morphable face model. Pattern Recogn. 74, 617–628 (2018)

    Article  Google Scholar 

  50. Kumar, A., Kaur, A., Kumar, M.: Face detection techniques: a review. Artif. Intell. Rev. 52(2), 927–948 (2019)

    Article  Google Scholar 

  51. Bodini, M.: A review of facial landmark extraction in 2d images and videos using deep learning. Big Data and Cognitive Computing 3(1), 14 (2019)

    Article  Google Scholar 

  52. Taskiran, M., Kahraman, N., Erdem, C.E.: Face recognition: past, present and future (a review). Digital Signal Process (2020) 102809

  53. Huang, G.B., Lee, H., Learned-Miller, E., Learning hierarchical representations for face verification with convolutional deep belief networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

  54. Zhu, Z., Luo, P., Wang, X., Tang, X.: Recover canonical view faces in the wild with deep neural networks. ar**v

  55. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: Proceedings of the IEEE conference on computer vision and pattern recognition

  56. Schro, F., Kalenichenko, D., Philbin, J., Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition pp. 815–823

  57. Parkhi, O.M., Vedaldi, A, Zisserman, A.: Deep face recognition (2015)

  58. Wu, X., He, R., Sun, Z., Tan, T.: A light CNN for deep face representation with noisy labels. IEEE Trans. Inf. Forensics Secur. 13(11), 2884–2896 (2018)

    Article  Google Scholar 

  59. Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach for deep face recognition. In: European Conference on Computer Vision, Springer, pp. 499–515 (2016)

  60. Yeung, H. W. F., Li, J., Chung, Y.Y.: Improved performance of face recognition using CNN with constrained triplet loss layer. In: 2017 International Joint Conference on Neural Networks (IJCNN), IEEE, pp 1948–1955 (2017)

  61. Fredj, H.B., Bouguezzi, S., Souani, C., Face recognition in unconstrained environment with CNN. Springer, pp. 1–20 (2020).

  62. Sharma, A., Kumar, A., Daume, H., Jacobs, D.W.: Generalized multi view analysis: a discriminative latent space, pp. 2160–2167 (2012)

  63. Bengio, Y.: Learning deep architectures for ai

  64. Zhu, Z., Luo, P., Wang, X., Tang, X.: Deep learning identity-preserving face space, pp. 113–120 (2013)

  65. Chu, Y., Zhao, L., Ahmad, T.: Multiple feature subspaces analysis for single sample per person face recognition. Vis. Comput. 35(2), 239–256 (2019)

    Article  Google Scholar 

  66. Zhu, X., Lei, Z., Yan, J., Yi, D., Li, S.Z.: High- fidelity pose and expression normalization for face recognition in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 787–796 (2015)

  67. Werghi, N., Tortorici, C., Berretti, S., Del Bimbo, A.: Boosting 3d lbp-based face recognition by fusing shape and texture descriptors on the mesh. IEEE Trans. Inf. Forensics Secur. 11(5), 964–979 (2016)

    Article  Google Scholar 

  68. Egger, B., Smith, W.A., Tewari, A., Wuhrer, S., Zollhoefer, M., Beeler, T., Bernard, F., Bolkart, T., Kortylewski, A., Romdhani, S., et al.: 3D morphable face models past, present, and future. ACM Trans. Gr. 39(5), 1–38 (2020)

    Article  Google Scholar 

  69. King, D.E.: Dlib-ml: A machine learning toolkit, J. Mach. Learn. Res. 1755–1758.

  70. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition

  71. Kazemi, V., Sullivan, J.: One millisecond face alignment with an ensemble of regression trees. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  72. Huber, P., Hu, G., Tena, R., Mortazavian, P., Koppen, W., Ratsch, W.C.M., Kittler, J.: A multi-resolution 3D morphable face model and fitting framework. In: Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, pp. 79–86 (2016)

  73. Hartley, R.I., Zisserman, A.: Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, Cambridge

  74. Aldrian, O., Smith, W.A.P.: Inverse rendering of faces with a 3D morphable model. IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1080–1093

  75. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)

  76. Dahl, G.E., Sainath, T.N., Hinton, G.E.: Improving deep neural networks for lvcsr using rectified linear units and dropout. In: International Conference on Acoustics, Speech and Signal Processing 28 (5)

  77. Yi, Dong, et al.: Learning face representation from scratch. ar**v preprint ar**v:1411.7923 (2014)

  78. Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-pie. Image Vis. Comput. 28(5), 807–813 (2010)

    Article  Google Scholar 

  79. Savran, A., Alyuz, N., H. Dibeklioglu, O. Celiktutan, B. Gokberk, B. Sankur, L. Akarun, Bospho-rus database for 3d face analysis, in: European workshop on biometrics and identity management, Springer, 2008, pp. 47–56.

  80. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments (2008)

  81. Wolf, L., Hassner, T., Maoz, I.: Face recognition in unconstrained videos with matched background similarity. In: CVPR 2011. IEEE, pp. 529–534 (2011)

  82. Ding, C., Tao, D.: A comprehensive survey on pose-invariant face recognition. ACM Trans. Intell. Syst. Technol. 7(3), 1–42 (2016)

    Article  Google Scholar 

  83. Hu, G., Yan, F., Kittler, J., Christmas, W., Chan, C.H., Feng, Z., Huber, P.: Efficient 3d morphable face model fitting. Pattern Recogn. 67, 366–379 (2017)

    Article  Google Scholar 

  84. Ho, H.T., Chellappa, R.: Pose-invariant face recognition using markov random fields. IEEE Trans. Image Process. 22(4), 1573–1584 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  85. Kan, M., Shan, S., Chang, H., Chen, X.: Stacked progressive auto-encoders (SPAE) for face recognition across poses , pp. 1883–1890 (2014)

  86. Kafai, M., An, Le., Bhanu, B.: Reference face graph for face recognition. IEEE Trans. Inf. Forensics Secur. 9(12), 2132–2143 (2014)

    Article  Google Scholar 

  87. Petpairote, C., Madarasmi, S., Chamnongthai, K.,: 2D pose-invariant face recognition using single frontal-view face database, Wireless Personal Communications, 1–17 (2020)

  88. Asthana, A., Marks, T. K., Jones, M. J., Tieu, K. H., Rohith, M.: Fully automatic pose-invariant face recognition via 3d pose normalization, pp. 937–944 (2011)

  89. Li, S., Liu, X., Chai, X., Zhang, H., Lao, S., Shan, S.: Morphable displacement field based image matching for face recognition across pose, pp. 102–115 (2012)

  90. Yi, D., Lei, Z., Li, S. Z,: Towards pose robust face recognition, pp. 3539–3545 (2013)

  91. Chen, D., Cao, X., Wen, F., Sun, J.: Blessing of dimensionality: high-dimensional feature and its efficient compression for face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3025–3032 (2013)

  92. Li, A., Shan, S., Gao, W.: Coupled bias-variance tradeoff for cross-pose face recognition. IEEE Trans. Image Process. 21(1), 305–315 (2011)

    MathSciNet  MATH  Google Scholar 

  93. Zhu, Z., Luo, P., Wang, X., Tang, X.: Deep learning multi-view representation for face recognition, ar**v preprint https://arxiv.org/abs/1406.6947.

  94. Yim, J. , Jung, H., Yoo, B., Choi, C., Park, D., Kim, J.: Rotating your face using multi-task deep neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 676–684 (2015)

  95. Deng, W., Hu, J., Wu, Z., Guo, J.: Lighting-aware face frontalization for unconstrained face recognition. Pattern Recogn. 68, 260–271 (2017)

    Article  Google Scholar 

  96. Ding, C., Tao, D.: Pose-invariant face recognition with homography-based normalization. Pattern Recogn. 66, 144–152 (2017)

    Article  Google Scholar 

  97. Li, H., Huang, D., Morvan, J.-M., Wang, Y., Chen, L.: Towards 3d face recognition in the real: a registration-free approach using ne-grained matching of 3d keypoint descriptors. Int. J. Comput. Vision 113(2), 128–142 (2015)

    Article  MathSciNet  Google Scholar 

  98. Azazi, A., Lut , S. L., Venkat, I., Fernandez-Martinez, F.: Towards a robust affect recognition: automatic facial expression recognition in 3D faces. In: Expert Systems with Applications, Vol. 42, pp. 3056–3066. Elsevier (2015)

  99. Lei, Y., Guo, Y., Hayat, M., Bennamoun, M., Zhou, X.: A two-phase weighted collaborative representation for 3d partial face recognition with single sample. Pattern Recogn. 52, 218–237 (2016)

    Article  Google Scholar 

  100. Deng, X., Da, F., Shao, H.: Efficient 3d face recognition using local covariance descriptor and riemannian kernel sparse coding. Comput. Electr. Eng. 62, 81–91 (2017)

    Article  Google Scholar 

  101. Hariri, W., Tabia, H., Farah, N., Benouareth, A., Declercq, D.: 3D facial expression recognition using kernel methods on Riemannian manifold. In: Engineering Applications of Artificial Intelligence, Vol. 42, pp. 25–32. Elsevier (2017)

  102. Liang, Y., Liao, J.-C., Pan, J,: Mesh-based scale-invariant feature transform-like method for three-dimensional face recognition under expressions and missing data. J. Electron. Imaging, Vol. 29, International Society for Optics and Photonics, p. 053008 (2020)

  103. Atik, M.E., Duran, Z.: Deep learning-based 3D face recognition using derived features from point cloud. In: Innovations in Smart Cities Applications Volume 4: The Proceedings of the 5th International Conference on Smart City Applications, Springer International Publishing, pp. 797–808 (2021)

  104. Zhang, Z., Da, F., Yu, Y.: Data-free point cloud network for 3d face recognition (2019). https://arxiv.org/abs/1911.04731

  105. Hassner, T., Harel, S., Paz, E., Enbar, R., Effective face frontalization in unconstrained images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4295–4304 (2015)

  106. Yin, X., Yu, X., Sohn, K., Liu, X., Chandraker, M.: Towards large-pose face frontalization in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3990–3999 (2017)

  107. Hu, C., Feng, Z., Wu, X., Kittler, J.: Dual encoder-decoder based generative adversarial networks for disentangled facial representation learning. IEEE Access 8, 130159–130171 (2020)

    Article  Google Scholar 

  108. Hu, Y., Wu, X., Yu, B., He, R., Sun, Z.: Pose-guided photorealistic face rotation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8398–8406 (2018)

  109. Yin, Yu, et al. Dual-attention GAN for large-pose face frontalization. 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020). IEEE, 2020

  110. Zhang, Y., Shang, K., Wang, J., Li, N., Zhang, M.M.Y.: Patch strategy for deep face recognition, vol. 12, pp. 819–825. IET (2018)

  111. Wu, X., He, R., Sun, Z., Tan, T.: A light CNN for deep face representation with noisy labels, vol. 13, IEEE, pp. 2884–2896 (2018)

  112. Li, P., Wu, X., Hu, Y., He, R., Sun, Z.: M2fpa: a multi-yaw multi-pitch high-quality dataset and benchmark for facial pose analysis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10043–10051 (2019)

  113. Mian, A.S., Bennamoun, M., Owens, R.: An efficient multimodal 2d–3d hybrid approach to automatic face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1927–1943 (2007)

    Article  Google Scholar 

  114. Yi, D., Lei, Z., Liao, S., Li, S.Z,: Learning face representation from scratch, pp. 2892–2900 (2014)

  115. Wang, F.. **ang, X., Cheng, J., Yuille, A. L.: Normface: L2 hypersphere embedding for face veri cation, pp. 1041–1049 (2017)

  116. Zhang, M.M.Y., Shang, K., Wu, H.: Deep compact discriminative representation for unconstrained face recognition, Vol. 75, pp. 118–127. Elsevier (2019).

  117. Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., and Zhou, J., Li, Z., Liu, W.: Cosface: large margin cosine loss for deep face recognition, pp. 5265–5274 (2018)

  118. Kim, M., Hong, J., Kim, J., Lee, H. J., Ro, Y. M.: Unsupervised disentangling of viewpoint and residues variations by substituting representations for robust face recognition. IEEE, pp. 8952–8959 (2021)

  119. Cao, Z., Yin, Q., Tang, X., Sun, J.: Face recognition with learning-based descriptor. In : IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE 2010, 2707–2714 (2010)

  120. Chang, K.I., Bowyer, K.W., Flynn, P.J.: An evaluation of multimodal 2D+3D face biometrics. IEEE Trans. Pattern Anal. Mach. Intell. 27, 619–624 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahma Abed.

Ethics declarations

Conflict of interest

Sahbi Bahroun declares that he has no conflict of interest. Rahma Abed declares that he has no conflict of interest. Ezzeddine Zagrouba declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahroun, S., Abed, R. & Zagrouba, E. Deep 3D-LBP: CNN-based fusion of shape modeling and texture descriptors for accurate face recognition. Vis Comput 39, 239–254 (2023). https://doi.org/10.1007/s00371-021-02324-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02324-x

Keywords

Navigation