Log in

Fluid mud dynamics in the Weser estuary turbidity zone tracked by high-resolution side-scan sonar and parametric sub-bottom profiler

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Fluid mud in estuarine turbidity maximum zones (TMZ) can pose considerable navigation risks due to potentially substantial reductions in nautical depth, coupled with an inherent difficulty of detection by conventional echo-sounders. Despite intensive research efforts, however, our knowledge about the spatial and temporal dynamics of fluid mud is still not sufficient. In this study, the combined use of a side-scan sonar (Sportscan®, Imagenex) and a parametric sub-bottom profiler (SES-2000®, Innomar Technology GmbH) has proved successful for high-resolution fluid mud detection and volumetric quantification in an estuarine environment. In 2004 and 2005, repeated surveys were conducted in the navigation channel of the upper meso- to lower macrotidal Weser estuary TMZ (German North Sea coast) at different tidal stages and river discharges. Current velocity data were simultaneously collected by 1,200-kHz broadband ADCP (RDInstruments) measurements. Ground-truthing was carried out by means of grab sampling and gravity coring, adapted to fluid mud conditions. It was found that fluid mud occurrence in the Weser estuary is highly variable on time scales of a few hours and spatial scales of several metres. The riverbed is characterised by sand and mud deposits, and a complex morphology including subaqueous dunes and smooth bed deposits intermittently overlain by fluid mud. Thus, a continuous, coherent fluid mud body covering the entire TMZ riverbed was not observed. Rather, spatial distribution was patchy and highly dependent on suspended particulate matter (SPM) concentrations in the water column, as a result of which local fluid mud deposits varied in thickness from centimetres to metres. The formation of fluid mud was largely restricted to slack water, although slack-water conditions were not necessarily associated with large-scale fluid mud appearance. Advective SPM transport of resuspended fluid mud seems to be the most plausible explanation for the high spatial variability observed, even between two successive tides. The amount of fluid mud deposited and resuspended in the course of a tidal cycle can reach several 10s of tons even in small riverbed depressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abril G, Riou SA, Etcheber H, Frankignoulle M, DeWit R, Middelburg JJ (2000) Transient, tidal time-scale, nitrogen transformations in an estuarine turbidity maximum-fluid mud system (the Gironde, south-west France). Estuarine Coastal Shelf Sci 50:703–715

    Article  Google Scholar 

  • Ashley GM (1990) Classification of large-scale subaqueous bedforms: a new look at an old problem. SEPM bedforms and bedding structures. J Sediment Petrol 60(1):160–172

    Google Scholar 

  • Bates CR, Oakley DJ (2004) Bathymetric sidescan investigation of sedimentary features in the Tay Estuary, Scotland. Int J Remote Sensing 25(22):5089–5104

    Article  Google Scholar 

  • Blondel P, Murton BJ (1997) Handbook of seafloor sonar imagery. Wiley, Chichester

    Google Scholar 

  • Bundesanstalt für Gewässerkunde (1992) Anpassung der Fahrrinne der Außenweser an die künftig weltweit gültigen Anforderungen der Containerschifffahrt—SKN—14 m-Ausbau (UVU). Bundesanstalt für Gewässerkunde, Koblenz, Umweltverträglichkeitsuntersuchung BFG-0664

  • Deutsches Gewässerkundliches Jahrbuch (2005) Weser- und Emsgebiet 2002. Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz, Norden

  • Dyer KR, Cornelisse J, Dearnaley MP, Fennessy MJ, Jones SE, Kappenberg J, McCave IN, Pejrup M, Puls W, Leussen W, Wolfstein K (1996) A comparison of in situ techniques for estuarine floc settling velocity measurements. J Sea Res 36(1/2):15–29

    Article  Google Scholar 

  • Eisma D (1993) Suspended matter in the aquatic environment. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Eißfeldt FP, Pietsch M (2001) Geotechnische und rheologische Untersuchungen zur Nautischen Sohle im Revier der Außenweser. HANSA-Schiffahrt-Schiffbau-Hafen 138(6):89–93

    Google Scholar 

  • Fanger HU, Neumann L, Ohm K, Riethmüller R (1985) MASEX’83, eine Untersuchung über die Trübungszone der Unterweser. Die Küste 42:209–225

    Google Scholar 

  • Fenster MS, FitzGerald DM (1996) Morphodynamics, stratigraphy, and sediment transport patterns of the Kennebec River estuary, Maine, USA. Sediment Geol 107:99–120

    Article  Google Scholar 

  • Franzius L (1991) Die Korrektion der Unterweser (Bremen, Nachdruck von 1888 mit ergänzenden Anmerkungen von Dipl.-Ing. Jan Dierksen). Die Küste 51:39–74

    Google Scholar 

  • Fugate DC, Friedrichs CT (2002) Determining concentration and fall velocity of estuarine particle populations using ADV, OBS and LISST. Cont Shelf Res 22:1867–1886

    Article  Google Scholar 

  • Grabemann I (1992) Die Trübungszone im Weser-Ästuar: Messungen und Interpretation. GKSS-Forschungszentrum Geesthacht GmbH, Dissertation Rep 92 E15

  • Grabemann I, Krause G (1989) Transport processes of suspended matter derived from time series in a tidal estuary. J Geophys Res 94:14373–14379

    Article  Google Scholar 

  • Grabemann I, Krause G (2001) On different time scales of suspended matter dynamics in the Weser Estuary. Estuaries 24(5):688–698

    Article  Google Scholar 

  • Grabemann I, Uncles RJ, Krause G, Stephens JA (1997) Behaviour of turbidity maxima in the Tamar (U.K.) and Weser (F.R.G.) estuaries. Estuarine Coastal Shelf Sci 45:235–246

    Article  Google Scholar 

  • Guan WB, Wolanski E, Dong LX (1998) Cohesive sediment transport in the Jiaojiang River Estuary, China. Estuarine Coastal Shelf Sci 46:861–871

    Article  Google Scholar 

  • Guan WB, Kot SC, Wolanski E (2005) 3-D fluid-mud dynamics in the Jiaojiang Estuary, China. Estuarine Coastal Shelf Sci 65:747–762

    Article  Google Scholar 

  • Kinecke GC, Sternberg RW, Trowbridge JH, Geyer WR (1996) Fluid mud processes on the Amazon continental shelf. Cont Shelf Res 16(5/6):667–696

    Article  Google Scholar 

  • Lewis DW, McConchie D (1994) Analytical sedimentology. Chapman & Hall, New York

    Google Scholar 

  • Liebetruth F, Eißfeldt FP (2003) Grundlagen für die Sicherheit und Leichtigkeit des Schiffsverkehrs—Untersuchungen zur nautischen Sohle. Mitteilungsblatt Bundesanstalt für Wasserbau 86:77–82

    Google Scholar 

  • Loeser HT (1992) Sonar engineering handbook. Peninsula, Los Altos, California

    Google Scholar 

  • Lüneburg H (1952) Beiträge zur Hydrographie der Wesermündung. Veröffentlichungen Instituts für Meeresforschung Bremerhaven 1(1):91–114

    Google Scholar 

  • Lüneburg H (1955) Beiträge zur Hydrographie der Wesermündung, IV Teil: zur Verteilung der Sinkstoffe in den Seitenräumen der Wesermündung. Veröffentlichungen Instituts für Meeresforschung Bremerhaven III:228–265

    Google Scholar 

  • Madson JA, Sommerfield CK (2003) Application of side-scan sonar, sub bottom profiling, and echo-sounding techniques to study sediment deposition and erosion in estuaries: results from the lower Delaware River and upper Delaware Bay. In: Proc US Hydro 2003 Conf, 24–27 March 2003, Biloxi, Mississippi. The Hydrographic Society of America (THSOA), Rockville, Maryland, http://www.thsoa.org/hy03/2_3.pdf

  • Meischner D, Rumohr J (1974) A light-weight, high-momentum gravity corer for subaqueous sediments. Senckenbergiana marit 6(1):105–117

    Google Scholar 

  • Müller H (1985) Vergleichende Messungen der Sohllage in einem Unterweserquerschnitt innerhalb der Schlickstrecke bei Nordenham. Die Küste 42:209–225

    Google Scholar 

  • Murdoch A, Azcue JM (1995) Manual of aquatic sediment sampling. CRC, Boca Raton, Florida

    Google Scholar 

  • Nitsche FO, Bell R, Carbotte SM, Ryan WBF, Flood R (2004) Process-related classification of acoustic data from the Hudson River Estuary. Mar Geol 209:131–145

    Article  Google Scholar 

  • Riethmüller R, Fanger HU, Grabemann I, Krasemann HL, Ohm K, Böning J, Neumann LJR, Lang G, Markofsky M, Schubert R (1988) Hydrographic measurements in the turbidity zone of the Weser estuary. In: Dronkers J, van Leussen W (eds) Physical processes in estuaries. Springer, Berlin Heidelberg New York, pp 332–344

    Google Scholar 

  • Schrottke K, Abegg F (2006) Measurements of near-bed suspended sediment dynamics in a tidal channel of the German Wadden Sea. Die Küste 69 (in press), pp 353–367

  • Schrottke K, Bartholomä A, Stegmann S (2005a) Sedimentkartierung des Weser-Ästuars auf Basis hydroakustischer Messungen. Schriftenreihe DVW 47:45–51

    Google Scholar 

  • Schrottke K, Bartholomä A, Becker M (2005b) Bed mobility in the Weser estuary turbidity zone. Hydro Int 9(7):27–29

    Google Scholar 

  • S**at FM (1997) Analyse der Schwebstoffdynamik in der Trübungszone eines Tideflusses. Leichtweiss-Institut für Wasserbau der Technischen Universität Braunschweig, Mitteilung 139

  • Uncles RJ (2002) Estuarine physical processes research: some recent studies and progress. Estuarine Coastal Shelf Sci 55:829–856

    Article  Google Scholar 

  • Uncles RJ, Stephens, JA, Barton ML (1992) Observations of fine-sediment concentrations and transport in the turbidity maximum region of an estuary. In: Prandle D (ed) Dynamics and exchanges in estuaries and the coastal zone. American Geophysical Union, Washington, District of Columbia, Coastal and Estuarine Studies vol 40, pp 255–276

  • Uncles RJ, Stephens JA, Smith RE (2002) The dependence of estuarine turbidity on tidal intrusion length, tidal range and residence time. Cont Shelf Res 22:1835–1856

    Article  Google Scholar 

  • Uncles RJ, Stephens JA, Law DJ (2006) Turbidity maximum in the macrotidal, highly turbid Humber Estuary, UK: flocs, fluid mud, stationary suspensions and tidal bores. Estuarine Coastal Shelf Sci 67:30–52

    Article  Google Scholar 

  • Wellershaus S (1981) Turbidity maximum and mud shoaling in the Weser estuary. Archiv Hydrobiol 92:161–198

    Google Scholar 

  • Whitehouse R, Soulsby R, Roberts W, Mitchener H (2000) Dynamics of estuarine muds. Thomas Telford, London

    Google Scholar 

  • Wienberg C (2003) Korrigiert und ausgebaggert—die Außenweser im Wandel der Zeit. In: Heidbrink I (ed) Konfliktfeld Küste: ein Lebensraum wird erforscht. Bibliotheks- und Informationssystem der Universität Oldenburg, Germany, Hanse-Studien 3, pp 139–160

    Google Scholar 

  • Winterwerp JC (2002) On the flocculation and settling velocity of estuarine mud. Cont Shelf Res 22:1339–1360

    Article  Google Scholar 

  • Wolanski E, Gibbs RJ, Mazda Y, Metha A, King B (1992) The role of turbulence in the settling of mud flocs. J Coastal Res 8(1):35–46

    Google Scholar 

  • Woodruff JD, Geyer WR, Sommerfield CK, Driscoll NW (2001) Seasonal variation of sediment deposition in the Hudson River estuary. Mar Geol 179:105–119

    Article  Google Scholar 

  • Wunderlich W, Müller S (2003) High-resolution sub-bottom profiling using parametric acoustics. Int Ocean Systems 7(4):6–11

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the team members of Innomar Technology GmbH, Germany for the kind provision of the SES-2000®, for their tremendous efforts to support the study and for their sustained cooperation. The captain and crew of the RV Senckenberg made an excellent job of all the cruises. The assistance of A. Raschke, N. Rötzer-Manken, M. Irmer and M. Wilsenack in the sediment laboratories and in the technical preparation of the cruises is also gratefully acknowledged. We are indebted to the Federal Institute of Hydrology, Koblenz, Germany for kindly providing river-discharge data, and to the local Waterways and Ship** office (WSA) in Bremerhaven for helpful discussion on bathymetric data. Constructive review comments made by K. Schwarzer and one anonymous referee are appreciated. This work was funded by the Deutsche Forschungsgemeinschaft as part of the DFG Research Center Ocean Margins of the University of Bremen RCOM no 0404 and the Senckenberg Institute who provided the ship time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Schrottke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schrottke, K., Becker, M., Bartholomä, A. et al. Fluid mud dynamics in the Weser estuary turbidity zone tracked by high-resolution side-scan sonar and parametric sub-bottom profiler. Geo-Mar Lett 26, 185–198 (2006). https://doi.org/10.1007/s00367-006-0027-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-006-0027-1

Keywords

Navigation