Log in

Information quantity evaluation of multivariate SETAR processes of order one and applications

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

The Self-Exciting Threshold Autoregressive model (SETAR) is non-linear and considers threshold values to model time series affected by regimes. It is extended through the Multivariate SETAR (MSETAR) model, where the threshold variable can also be a multivariate process. The stationary marginal density (smd) of an MSETAR process of order one corresponds to a Unified Skew-Normal density. In this paper, the smd of an MSETAR of order one process was considered to compute explicit expressions of differential entropy and Kullback–Leibler and Jeffrey’s divergences between two MSETAR(1) processes. In addition, two asymptotic tests based on divergences were built for statistical significance testing of the disparity between MSETAR(1) processes and the threshold coefficient matrix. Information measures considered involved high-dimensional integrals that likewise depended on multivariate cumulative density normal function. To solve these integrals, Genz’s algorithm was considered based on Cholesky decomposition and Monte Carlo approximation. Some numerical experiments and applications to fish condition factor and Chilean economic perception time series illustrate performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data used in Sect. 4.1 of this paper will be made available upon reasonable request from the corresponding author. Data used in Sect. 4.2 are publicly available from the github repository at https://github.com/percepcioneseconomicas/indices/find/main.

References

  • Abid SH, Hameed N (2014) The entropy of ARMA\((p, q)\) process. Am J Math Stat 4:12–20

  • Addo PM (2014) Multivariate self-exciting threshold autoregressive models with exogenous input. http://arxiv.org/abs/1407.7738

  • Andel J, Netuka I, Zvara K (1984) On threshold autoregressive processes. Kybernetika 20:89–106

    MathSciNet  Google Scholar 

  • Arellano-Valle RB, Azzalini A (2006) On the unification of families of skew-normal distributions. Scand J Stat 33:561–574

    Article  MathSciNet  Google Scholar 

  • Arellano-Valle RB, Contreras-Reyes JE, Genton MG (2013) Shannon entropy and mutual information for multivariate skew-elliptical distributions. Scand J Stat 40:42–62

    Article  MathSciNet  Google Scholar 

  • Arellano-Valle RB, Contreras-Reyes JE, Stehlík M (2017) Generalized skew-normal negentropy and its application to fish condition factor time series. Entropy 19:528

    Article  Google Scholar 

  • Arnold M, Günther R (2001) Adaptive parameter estimation in multivariate self-exciting threshold autoregressive models. Commun Stat Sim Comput 30:257–275

    Article  MathSciNet  Google Scholar 

  • Aziz MA (2011) Study of unified multivariate skew normal distribution with applications in finance and actuarial science. Ph.D. dissertation thesis, Bowling Green State University, Ohio

  • Azzalini A, Dalla-Valle A (1996) The multivariate skew-normal distribution. Biometrika 83:715–726

    Article  MathSciNet  Google Scholar 

  • Baragona R, Cucina D (2013) Multivariate self-exciting threshold autoregressive modeling by genetic algorithms. Jahrb Natl Okon Stat 233:3–21

    Google Scholar 

  • Brockwell PJ, Davis RA (1991) Time series: theory and methods, 2nd edn. Springer-Verlag, New York

    Book  Google Scholar 

  • Cai TT, Zhang CH, Zhou HH (2010) Optimal rates of convergence for covariance matrix estimation. Ann Stat 38:2118–2144

    Article  MathSciNet  Google Scholar 

  • Chan K, Tong H (1986) A note on certain integral equations associated with non-linear time series analysis. Prob Theor Relat Fields 73:153–158

    Article  Google Scholar 

  • Chávez D, Contreras-Reyes JE, Idrovo-Aguirre BJ (2023) A threshold GARCH model for Chilean economic uncertainty. J Risk Financ Manag 16:20

    Article  Google Scholar 

  • Contreras-Reyes JE (2014) Asymptotic form of the Kullback-Leibler divergence for multivariate asymmetric heavy-tailed distributions. Phys A 395:200–208

    Article  MathSciNet  Google Scholar 

  • Contreras-Reyes JE (2015) Rényi entropy and complexity measure for skew-Gaussian distributions and related families. Phys A 433:84–91

    Article  MathSciNet  Google Scholar 

  • Contreras-Reyes JE (2022) Rényi entropy and divergence for VARFIMA processes based on characteristic and impulse response functions. Chaos Solit Fract 160:112268

    Article  MathSciNet  Google Scholar 

  • Contreras-Reyes JE (2023) Information quantity evaluation of nonlinear time series processes and applications. Physica D 445:133620

    Article  MathSciNet  Google Scholar 

  • Cover TM, Thomas JA (2006) Elements of information theory. Wiley, New York

    Google Scholar 

  • Das S (2021) Stationary and cyclostationary processes for time series and spatio-temporal data. Ph.D. dissertation thesis. King Abdullah University of Science and Technology, Thuwal

  • Das S, Genton MG (2020) On the stationary marginal distributions of subclasses of multivariate Setar processes of order one. J Time Ser Anal 41:406–420

    Article  MathSciNet  Google Scholar 

  • Francq C, Raïssi H (2007) Multivariate portmanteau test for autoregressive models with uncorrelated but nonindependent errors. J Time Ser Anal 28:454–470

    Article  MathSciNet  Google Scholar 

  • Genz A (1992) Numerical computation of multivariate normal probabilities. J Comput Graph Stat 1:141–149

    Article  Google Scholar 

  • Genz A (1993) Comparison of methods for the computation of multivariate normal probabilities. Comput Sci Stat 25:400–405

    Google Scholar 

  • Gupta AK, Aziz MA, Ning W (2013) On some properties of the unified skew normal distribution. J Stat Theor Pract 7:480–495

    Article  MathSciNet  Google Scholar 

  • Kharazmi O, Contreras-Reyes JE, Balakrishnan N (2023) Optimal information, Jensen-RIG function and \(\alpha \)-Onicescu’s correlation coefficient in terms of information generating functions. Phys A 609:128362

  • Lee S, Karagrigoriou A (2011) A divergence test for autoregressive time series models. Stat Methods 8:442–450

    Article  MathSciNet  Google Scholar 

  • Loges W (2004) The stationary marginal distribution of a threshold AR(1) process. J Time Ser Anal 25:103–125

    Article  MathSciNet  Google Scholar 

  • R Core Team (2022) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Salicrú M, Menéndez ML, Pardo L, Morales D (1994) On the applications of divergence type measures in testing statistical hypothesis. J Multivar Anal 51:372–391

    Article  Google Scholar 

  • Tong H (1993) Non-linear time series: a dynamical system approach. Clarendon Press, Oxford, Oxford statistical science series

    Google Scholar 

  • Troncoso N, Contreras-Reyes JE, Idrovo-Aguirre BJ (2023) Measuring economic uncertainty synchrony with cross-sample entropy under common external factors: the case of Chile. Fluct Noise Lett. https://doi.org/10.1142/S0219477523500463

    Article  Google Scholar 

  • Tsay RS (1998) Testing and modeling multivariate threshold models. J Am Stat Assoc 93:1188–1202

    Article  MathSciNet  Google Scholar 

  • Wong SF, Tong H, Siu TK, Lu Z (2017) A new multivariate nonlinear time series model for portfolio risk measurement: the threshold copula-based TAR approach. J Time Ser Anal 38:243–265

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Contreras-Reyes’s research was funded by FONDECYT (Chile) grant No. 11190116. Special thanks to Soumya Das for providing the R codes related to maximum likelihood estimation method. The author also thanks the editor and two anonymous referees for their helpful comments and suggestions. All R codes used in this paper are available upon request from the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier E. Contreras-Reyes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Proposition 2.2

The differential entropy (Cover and Thomas 2006) of a random vector \(\textbf{X}\) with pdf (2.1) is defined by

$$\begin{aligned} H(\textbf{X})= & {} -\mathbb {E}\left[ \textrm{log}f_{\textbf{X}}(\textbf{x}|\varvec{\xi },\varvec{\Omega },\varvec{\Lambda },\varvec{\tau },\varvec{\Gamma })\right] \nonumber \\= & {} -\int _{\mathbb {R}^{k_1}}f_{\textbf{X}}(\textbf{x}|\varvec{\xi },\varvec{\Omega },\varvec{\Lambda },\varvec{\tau },\varvec{\Gamma })\textrm{log}\{f_{\textbf{X}}(\textbf{x}|\varvec{\xi },\varvec{\Omega },\varvec{\Lambda },\varvec{\tau },\varvec{\Gamma })\}d\textbf{x}. \end{aligned}$$
(5.1)

Based on (5.1), the logarithm is

$$\begin{aligned} \log f_{\textbf{X}}(\textbf{x}|\varvec{\xi },\varvec{\Omega },\varvec{\Lambda },\varvec{\tau },\varvec{\Gamma })=\log \phi _{k_1}(\varvec{\Omega }^{-1/2}(\textbf{x}-\varvec{\xi })) + \log \left[ \frac{\Phi _{k_2}(\varvec{\Lambda }^{\top }(\textbf{x}-\varvec{\xi })+\varvec{\tau }|\varvec{\Gamma })}{\Phi _{k_2}(\varvec{\tau }|\varvec{\Gamma }+\varvec{\Lambda }^{\top }\varvec{\Omega }\varvec{\Lambda })}\right] . \end{aligned}$$

Considering that differential entropy is invariant under translations of \(\textbf{x}\) (Cover and Thomas 2006), through Proposition 3 of Arellano-Valle et al. (2013) we get

$$\begin{aligned} H(\textbf{X})=\underbrace{\frac{1}{2}\log \{\textrm{det}(\varvec{\Omega })\} - \mathbb {E}[\log \phi _{k_1}(\textbf{Z})]}_{H(\textbf{X}_N)} - \mathbb {E}\left[ \log \left\{ \frac{\Phi _{k_2}(\varvec{\Lambda }^{\top }(\textbf{X}-\varvec{\xi })+\varvec{\tau }|\varvec{\Gamma })}{\Phi _{k_2}(\varvec{\tau }|\varvec{\Gamma }+\varvec{\Lambda }^{\top }\varvec{\Omega }\varvec{\Lambda })}\right\} \right] ,\nonumber \\ \end{aligned}$$
(5.2)

where \(\textbf{Z}=\varvec{\Omega }^{-1/2}(\textbf{X}-\varvec{\xi })\sim N(\textbf{0},\textbf{I})\) and \(\textbf{X}_N\sim N(\textbf{0},\varvec{\Omega })\). Thus, \(H(\textbf{X}_N)=\frac{1}{2}\log \{(2\pi e)^{k_1}\textrm{det}(\varvec{\Omega })\}\) and the result is obtained. \(\square \)

Proof of Proposition 2.3

Consider the pdf of \(\textbf{X}_i\) given by (2.3), \(f_{\textbf{X}_i}(\textbf{x}_i|\textbf{0},\textbf{P}_i,-\textbf{B}_i,\textbf{0},\textbf{L}_i^{-1})\), \(i=1,2\). The KL divergence between \(\textbf{X}_1\) and \(\textbf{X}_2\) is

$$\begin{aligned} K(\textbf{X}_1,\textbf{X}_2)= & {} \int _{\mathbb {R}^{k_1}} f_{\textbf{X}_1}(\textbf{x}_2|\textbf{0},\textbf{P}_1,-\textbf{B}_1,\textbf{0},\textbf{L}_1^{-1}) \log \left\{ \frac{f_{\textbf{X}_1}(\textbf{y}|\textbf{0},\textbf{P}_1,-\textbf{B}_1,\textbf{0},\textbf{L}_1^{-1})}{f_{\textbf{X}_2}(\textbf{y}|\textbf{0},\textbf{P}_2,-\textbf{B}_2,\textbf{0},\textbf{L}_2^{-1})}\right\} d\textbf{y}\\= & {} \underbrace{\mathbb {E}[\log f_{\textbf{X}_1}(\textbf{X}_1|\textbf{0},\textbf{P}_1,-\textbf{B}_1,\textbf{0},\textbf{L}_1^{-1})\}]}_{-H(\textbf{X}_1)}+\,\mathbb {E}[-\log f_{\textbf{X}_2}(\textbf{X}_1|\textbf{0},\textbf{P}_2,-\textbf{B}_2,\textbf{0},\textbf{L}_2^{-1})\}]. \end{aligned}$$

The second term of the last equation is the so-called cross-entropy and depends on the logarithm of the pdf of \(\textbf{X}_2\) due to (2.3),

$$\begin{aligned} \log f_{\textbf{X}_2}(\textbf{x}_1|\textbf{0},\textbf{P}_2,-\textbf{B}_2,\textbf{0},\textbf{L}_2^{-1})= & {} \log \phi _k(\textbf{P}_2^{-1}\textbf{x}_1) + \log \left[ \frac{\Phi _{k}(-\textbf{B}_2^{\top }\textbf{x}_1|\textbf{L}_2^{-1})}{2^k}\right] \\= & {} -\frac{1}{2}[k\log (2\pi )+\log \{\textrm{det}(\textbf{P}_2)\}+\textbf{x}_1^{\top }\textbf{P}_2^{-1}\textbf{x}_1]\\{} & {} \,+ \log \left[ \frac{\Phi _{k}(-\textbf{B}_2^{\top }\textbf{x}_1|\textbf{L}_2^{-1})}{2^k}\right] , \end{aligned}$$

and

$$\begin{aligned} \mathbb {E}[-\log f_{\textbf{X}_2}(\textbf{x}_1|\textbf{0},\textbf{P}_2,-\textbf{B}_2,\textbf{0},\textbf{L}_2^{-1})\}]= & {} \frac{1}{2}\{k\log (2\pi )+\log \{\textrm{det}(\textbf{P}_2)\}+\mathbb {E}[\textbf{X}_1^{\top }\textbf{P}_2^{-1}\textbf{X}_1]\}\\{} & {} \,- \mathbb {E}\left[ \log \left\{ \frac{\Phi _{k}(-\textbf{B}_2^{\top }\textbf{X}_1|\textbf{L}_2^{-1})}{2^k}\right\} \right] .\\ \end{aligned}$$

Given that mean vector of \(\textbf{X}_i\) is zero, by part (ii) of Lemma 2.1 the expected value of the quadratic form of the latter equation is \(\mathbb {E}[\textbf{X}_1^{\top }\textbf{P}_2^{-1}\textbf{X}_1]=\textrm{tr}(\textbf{P}_2^{-1}\textbf{P}_1)\) and

$$\begin{aligned} K(\textbf{X}_1,\textbf{X}_2)= & {} \frac{1}{2}\{k\log (2\pi )+\log \{\textrm{det}(\textbf{P}_2)\}+\textrm{tr}(\textbf{P}_2^{-1}\textbf{P}_1)\} - \mathbb {E}\left[ \log \left\{ \frac{\Phi _{k}(-\textbf{B}_2^{\top }\textbf{X}_1|\textbf{L}_2^{-1})}{2^k}\right\} \right] \\{} & {} -\frac{1}{2}\log \{(2\pi e)^k\textrm{det}(\textbf{P}_1)\} + \mathbb {E}\left[ \log \left\{ \frac{\Phi _{k}(-\textbf{B}_1^{\top }\textbf{X}_1|\textbf{L}_1^{-1})}{2^k}\right\} \right] .\,\Box \end{aligned}$$

\(\square \)

Proof of Proposition 3.1

Considering the proof of Lemma 6 of Cai et al. (2010), it is proved that the KL divergence based on covariance matrix estimates \(\textbf{P}_1\) and \(\textbf{P}_2\) has the following upper bound:

$$\begin{aligned} K({\varvec{\Theta }}_1,{\varvec{\Theta }}_2)= & {} \frac{1}{2}\left[ \textrm{tr}(\textbf{P}_2^{-1}\textbf{P}_1)-\log \{\textrm{det}(\textbf{P}_2^{-1}\textbf{P}_1)\} - k\right] \\\le & {} c_1 a b^2,\nonumber \end{aligned}$$

where \(c_1\) is a positive constant, \(a=n^{1/(2\gamma +1)}\) and \(b=a^{-(\gamma +1)}\). \(\gamma \) is a smoothness parameter whose optimal value found by Cai et al. (2010) was \(\gamma =1/2\). Thus,

$$\begin{aligned} K({\varvec{\Theta }}_1,{\varvec{\Theta }}_2)\le c_1 n^{-1/2}. \end{aligned}$$
(5.3)

Considering Corollary 2.4, the J divergence (3.8) can be expressed in terms of KL divergences of two multivariate normal random variables given by (see also Arellano-Valle et al. 2017). Therefore,

$$\begin{aligned} |J(\widehat{{\varvec{\Theta }}}_1,\widehat{{\varvec{\Theta }}}_2) - J({\varvec{\Theta }}_1,{\varvec{\Theta }}_2)|\le & {} |K(\widehat{{\varvec{\Theta }}}_1,\widehat{{\varvec{\Theta }}}_2) - K({\varvec{\Theta }}_1,{\varvec{\Theta }}_2)|+|K(\widehat{{\varvec{\Theta }}}_2,\widehat{{\varvec{\Theta }}}_1) - K({\varvec{\Theta }}_2,{\varvec{\Theta }}_1)|\nonumber \\{} & {} \,+ \sum _{i=1}^2 |\widehat{I}_{ii}-I_{ii}| + \sum _{\begin{array}{c} i,j=1\\ i\ne j \end{array}}^2 |\widehat{I}_{ij} - I_{ij}|, \end{aligned}$$
(5.4)

where the triangular inequality was used considering that KL divergence is non-negative. Using (3.4) and (5.3) and applying the expected value to both sides of (5.4), we get

$$\begin{aligned} \mathbb {E}\left[ |J(\widehat{{\varvec{\Theta }}}_1,\widehat{{\varvec{\Theta }}}_2) - J({\varvec{\Theta }}_1,{\varvec{\Theta }}_2)|\right] \le 2(c_1 n^{-1/2}+ c_2 N^{-1/2})\\ = c_3(n^{-1/2}+N^{-1/2}), \end{aligned}$$

where \(c_2\) and \(c_3\) are two positive constants. Thus, the result is obtained. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contreras-Reyes, J.E. Information quantity evaluation of multivariate SETAR processes of order one and applications. Stat Papers 65, 1553–1573 (2024). https://doi.org/10.1007/s00362-023-01457-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-023-01457-6

Keywords

Navigation