Log in

Initializing k-means Clustering by Bootstrap and Data Depth

  • Published:
Journal of Classification Aims and scope Submit manuscript

Abstract

The k-means algorithm is widely used in various research fields because of its fast convergence to the cost function minima; however, it frequently gets stuck in local optima as it is sensitive to initial conditions. This paper explores a simple, computationally feasible method, which provides k-means with a set of initial seeds to cluster datasets of arbitrary dimensions. Our technique consists of two stages: firstly, we use the original data space to obtain a set of prototypes (cluster centers) by applying k-means to bootstrap replications of the data and, secondly, we cluster the space of centers, which has tighter (thus easier to separate) groups, and search the deepest point in each assembled cluster using a depth notion. We test this method with simulated and real data, compare it with commonly used k-means initialization algorithms, and show that it is feasible and more efficient than previous proposals in many situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aloise, D., Damasceno, N. C., Mladenović, N., & Pinheiro, D. N. (2017). On strategies to fix degenerate k-means solutions. Journal of Classification, 34(2), 165–190.

    Article  MathSciNet  MATH  Google Scholar 

  • Arcones, M. A., & Giné, E. (1992). On the bootstrap of M-estimators and other statistical functionals. In R. Lepage, & L. Billard (Eds.) Exploring the limits of the bootstrap (pp. 13–47). New York: Wiley.

  • Arthur, D., & Vassilvitskii, S. (2007). k-means++: the advantages of careful seeding. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 1027–1035).

  • Äyrämö, S., Kärkkäinen, T., & Majava, K. (2007). Robust refinement of initial prototypes for partitioning-based clustering algorithms. In C.H. Skiadas (Ed.) Recent advances in stochastic modelling and data analysis (pp. 473–482). Crete: World Scientific.

  • Bradley, P. S., & Fayyad, U. (1998). Refining initial points for k-means clustering. In Proceedings of the 15th International Conference of Machine Learning (pp. 91–99).

  • Brusco, M. J. (2004). Clustering binary data in the presence of masking variables. Psychological Methods, 9(4), 510–523.

    Article  Google Scholar 

  • Brusco, M. J., & Cradit, J. D. (2001). A variable-selection heuristic for k-means clustering. Psychometrika, 66, 249–270.

    Article  MathSciNet  MATH  Google Scholar 

  • Celebi, M. E. (2011). Improving the performance of k-means for color quantization. Image and Vision Computing, 29(4), 260–271.

    Article  Google Scholar 

  • Celebi, M. E., Kingravi, H. A., & Vela, P. A. (2013). A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Systems with Applications, 40(1), 200–210.

    Article  Google Scholar 

  • Dolnicar, S., & Leisch, F. (2001). Behavioral market segmentation of binary guest survey data with bagged clustering. In B.H.H.K. Dorffner G (Ed.) Artificial neural networks ICANN 2001, volume 2130 of lecture notes in computer science (pp. 111–118). Berlin: Springer.

  • Dudoit, S., & Fridlyand, J. (2003). Bagging to improve the accuracy of a clustering procedure. Bioinformatics, 19(9), 1090–1099.

    Article  Google Scholar 

  • El Agha, M., & Ashour, W. M. (2012). Efficient and fast initialization algorithm for k-means clustering. International Journal of Intelligent Systems and Applications, 1, 21–31.

    Article  Google Scholar 

  • Forgy, E. (1965). Cluster analysis of multivariate data: efficiency vs interpretability of classifications. Biometrics, 21, 768–780.

    Google Scholar 

  • García, C. (2016). BoCluSt: bootstrap clustering stability algorithm for community detection. PLOS One, 1(6), e0156576. https://doi.org/10.1371/journal.pone.0156576.

    Article  Google Scholar 

  • Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: a guide to the theory of NP-completeness. New York: Freeman.

    MATH  Google Scholar 

  • Gonzalez, T. (1985). Clustering to minimize the maximum intercluster distance. Theoretical Computer Science, 38, 293–306.

    Article  MathSciNet  MATH  Google Scholar 

  • Hand, D. J., & Krzanowski, W. J. (2004). Optimising k-means clustering results with standard software packages. Computational Statistics & Data Analysis, 49, 969–973.

    Article  MathSciNet  MATH  Google Scholar 

  • He, J., Lan, M., Tan, C. L., Sung, S. Y., & Low, H. B. (2004). Initialization of cluster refinement algorithms: a review and comparative study. In IEEE International Joint Conference on Neural Networks, Budapest. https://doi.org/10.1109/IJCNN.2004.1379917.

  • Hennig, C. (2007). Cluster-wise assessment of cluster stability. Computational Statistics and Data Analysis, 52, 258–271.

    Article  MathSciNet  MATH  Google Scholar 

  • Hofmans, J., Ceulemans, E., Steinley, D., & Van Mechelen, I. (2015). On the added value of bootstrap analysis for k-means clustering. Journal of Classification, 32(2), 268–284.

    Article  MathSciNet  MATH  Google Scholar 

  • Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193–198.

    Article  MATH  Google Scholar 

  • Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern Recognition Letters, 31(8), 651–666.

    Article  Google Scholar 

  • Jörnsten, R. (2004). Clustering and classification based on the L1-data depth. Journal of Multivariate Analysis, 90, 67–89.

    Article  MathSciNet  MATH  Google Scholar 

  • Jörnsten, R., Vardi, Y., & Zhang, C. H. (2002). A robust clustering method and visualization tool based on data depth. In Y. Dodge (Ed.) Statistical data analysis based on the L1–norm and related methods (pp. 313–366). Birkhäuser Verla: Basel.

  • Katsavounidis, I., Kuo, C., & Zhang, Z. (1994). A new initialization technique for generalized Lloyd iteration. IEEE Signal Processing Letters, 1, 144–146.

    Article  Google Scholar 

  • Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data: an introduction to cluster analysis. New York: Wiley.

    Book  MATH  Google Scholar 

  • Kerr, M. K., & Churchill, G. A. (2001). Bootstrap** cluster analysis: assessing the reliability of conclusions from microarray experiments. Proceedings of the National Academy of Sciences of the United States of America, 98(16), 8961–8965.

    Article  MATH  Google Scholar 

  • Khan, S. S., & Ahmad, A. (2004). Cluster center initialization algorithm for k-means clustering. Pattern Recognition Letters, 25(22), 1293–1302.

    Article  Google Scholar 

  • Liao, H., Jihjai, X., Sun, W., Dai, J., & Yu, S. (2014). Adaptative initialization method based on spatial local information for k-means algorithm. Mathematical Problems in Engineering. Article ID 761468, 11 pp.

  • Lichman, M. (2013). Machine Learning Repository, University of California, Irvine, School of Information and Computer Sciences. http://archive.ics.uci.edu/ml. Accessed 24 Nov 2017.

  • Liu, R. (1990). On a notion of data depth based on random simplices. Annals of Statistics, 18, 405–414.

    Article  MathSciNet  MATH  Google Scholar 

  • López-Pintado, S., & Romo, J. (2009). On the concept of depth for functional data. Journal of the American Statistical Association, 104(486), 718–734.

    Article  MathSciNet  MATH  Google Scholar 

  • MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium in Mathematics and Probability (pp. 281–297).

  • Mahajan, M., Nimnhorkar, P., & Varadarajan, K. (2012). The planar k- means problem is NP-hard. Theoretical Computer Science, 442, 13–21.

    Article  MathSciNet  MATH  Google Scholar 

  • Maitra, R., & Melnykov, V. (2010). Simulating data to study performance of finite mixture modeling and clustering algorithms. Journal of Computational and Graphical Statistics, 19(2), 354–376.

    Article  MathSciNet  Google Scholar 

  • Milligan, G. W. (1980). An examination of the effect of six types of error perturbation on fifteen clustering algorithms. Psychometrika, 45, 325–342.

    Article  Google Scholar 

  • Milligan, G. W., & Cooper, M. C. (1988). A study of standardization of variables in cluster analysis. Journal of Classification, 5, 181–204.

    Article  MathSciNet  Google Scholar 

  • Milligan, G. W., Soon, S. C., & Sokol, L. M. (1983). The effect of cluster size, dimensionality, and the number of clusters on recovery of true cluster structure. IEEE Transactions of Pattern Analysis and Machine Intelligence, PAMI-5 (1), 40–47.

    Article  Google Scholar 

  • Oja, H. (1983). Descriptive statistics for multivariate distributions. Statistics & Probability Letters, 1, 327–332.

    Article  MathSciNet  MATH  Google Scholar 

  • Peña, J. M., Lozano, J. A., & Larrañaga, P. (1999). An empirical comparison of four initialization methods for the k-means algorithm. Pattern Recognition Letters, 20, 1027–1040.

    Article  Google Scholar 

  • Pillai, K. C. S. (1954). On some distribution problems in multivariate analysis. Mimeograph Series No. 88, Institute of Statistics, University of North Carolina.

  • Pollard, D. (1982). A central limit theorem for k-means clustering. Annals of Probability, 10(4), 919–926.

    Article  MathSciNet  MATH  Google Scholar 

  • Punj, G., & Stewart, D. W. (1983). Cluster analysis in marketing research: review and suggestions for application. Journal of Marketing Research, 20(2), 134–148.

    Article  Google Scholar 

  • R Core Team. (2014). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org.

    Google Scholar 

  • Reddy, D., Mishra, D., & Jana, P. K. (2011). MST-based cluster initialization for k-means. Advances in Computer Science and Information Technology 2011, Part I, Communications in Computer and Information Science, 131, 329–338.

    Google Scholar 

  • Redmonds, S. J., & Heneghan, C. (2007). A method for initialising the k-means clustering algorithm using kd-trees. Pattern Recognition Letters, 28(8), 965–973.

    Article  Google Scholar 

  • Selim, S. Z., & Ismail, M. A. (1984). k-means type algorithms: a generalized convergence theorem and characterization of local optimality. IEEE Transactions on Pattern Analysis, 6(1), 81–87.

    Article  MATH  Google Scholar 

  • Steinley, D. (2003). Local optima in k-means clustering: what you don’t know may hurt you. Psychological Methods, 8(3), 294–304.

    Article  Google Scholar 

  • Steinley, D. (2004). Properties of the Hubert-Arabie adjusted rand index. Psychological Methods, 9(3), 386–396.

    Article  Google Scholar 

  • Steinley, D. (2006). Profiling local optima in k-means clustering: develo** a diagnostic technique. Psychological Methods, 11(2), 178–192.

    Article  Google Scholar 

  • Steinley, D., & Brusco, M. J. (2007). Initializing k-means batch clustering: a critical evaluation of several techniques. Journal of Classification, 24, 99–121.

    Article  MathSciNet  MATH  Google Scholar 

  • Su, T., & Dy, J. G. (2007). In search of deterministic methods for initializing k-means and Gaussian mixture clustering. Intelligent Data Analysis, 11, 319–338.

    Article  Google Scholar 

  • Torrente, A., López-Pintado, S., & Romo, J. (2013). DepthTools: an R package for a robust analysis of gene expression data. BMC Bioinformatics, 14, 237. https://doi.org/10.1186/1471-2105-14-237.

    Article  Google Scholar 

  • Tou, J. T., & González, R. C. (1974). Pattern recognition principles. Massachusetts: Addison Wesley.

    MATH  Google Scholar 

  • Tukey, J. W. (1975). Mathematics and the picturing of data. In Proceedings of the International Congress of Mathematicians (pp. 523–531).

  • Vardi, Y., & Zhang, C. H. (2000). The multivariate L1-median and associated data depth. Proceedings of the National Academy of Sciences of the United States of America, 97, 1423–1426.

    Article  MathSciNet  MATH  Google Scholar 

  • Vega-Pons, S., & Ruiz-Schulcloper, J. (2011). A survey of clustering ensemble algorithms. International Journal of Patter Recognition and Artificial Intelligence, 25(3), 337–372.

    Article  MathSciNet  Google Scholar 

  • Ward, J. J. (1963). Hierarchical grou** to optimize an objective function. Journal of the American Statistical Association, 58, 236–244.

    Article  MathSciNet  Google Scholar 

  • Yi, B., Qiao, H., Yang, F., & Xu, C. (2010). An improved initialization center algorithm for k-means clustering. In International Conference on Computational Intelligence and Software Engineering (CiSE). https://doi.org/10.1109/CISE.2010.5676975.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurora Torrente.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torrente, A., Romo, J. Initializing k-means Clustering by Bootstrap and Data Depth. J Classif 38, 232–256 (2021). https://doi.org/10.1007/s00357-020-09372-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00357-020-09372-3

Keywords

Navigation