Log in

Improvements to PIV image analysis by recognizing the velocity gradients

  • Research Paper
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Two iterative PIV image processing methods are introduced, which utilize displacement and deformation of the interrogation areas to maximize the correlation. The velocity gradients used for the window deformation are iteratively estimated directly from the images and no velocity values are required from neighbouring interrogation areas, as with numerical differentiation. The improved accuracy and resolution of the velocity gradient estimation compared to numerical differentiation is shown using synthetic images. The performance in a real application is shown using experimental reference images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Hart DP (2002) PIV processing using multidimensional correlation. In: Proceedings of the 10th international symposium on flow visualization, Kyoto, Japan, Paper F0374

  • Huang HT, Fiedler HE, Wang JJ (1993) Limitation and improvement of PIV; part II: particle image distortion, a novel technique. Exp Fluids 15:263–273

    CAS  Google Scholar 

  • Jambunathan K, Ju XY, Dobbins BN, Ashforth-Frost S (1995) An improved cross correlation technique for particle image velocimetry. Meas Sci Technol 6:507–514

    Article  CAS  Google Scholar 

  • Kähler CJ (2000) Multiplane stereo PIV—recording and evaluation methods. In: Proceedings of Euromech 411. Rouen, France

  • Lecordier B (1997) Etude de l’interaction de la propagation d’une flamme premelangee avec le champ aerodynamique, par association de la tomographie laser et de la velocimetrie par Images de particules. PhD Thesis, l’Universite de Rouen, France

  • Lecordier B, Lecordier JC, Trinité M (1999) Iterative sub-pixel algorithm for the cross-correlation PIV measurements. In: Proceedings of 3rd international workshop on PIV. University of California, Santa Barbara, USA

  • Lindken R, Poelma C, Westerweel J (2003) Compensation for spatial effects for non-uniform seeding in PIV interrogation by signal relocation. In: Proceedings of the 5th international symposium on particle image velocimetry. Busan, Korea, Paper 3302

  • Mayer S (2002) A generalized processing technique in digital particle image velocimetry with direct estimation of velocity gradients. Exp Fluids 33:443–457

    Google Scholar 

  • Nobach H (2004) Accuracy of sub-pixel interpolation in PIV and PTV image processing. Technical report no. 001/2004, Technische Universität Darmstadt, Fachbereich Maschinenbau, Fachgebiet Strömungslehre und Aerodynamik

  • Nobach H, Honkanen M (2005) Two-dimensional Gaussian regression for sub-pixel displacement estimation in particle image velocimetry and particle position estimation in particle tracking velocimetry. Exp Fluids 38(4):511–515

    Article  Google Scholar 

  • Nobach H, Damaschke N, Tropea C (2004) High-precision sub-pixel interpolation in PIV/PTV image processing. In: Proceedings of the 12th international symposium on applications of laser techniques to fluid mechanics. Lisbon, Portugal, Paper 24.1

  • Nogueira J, Lecuona A, Rodriguez PA (1999) Local field correction PIV: on the increase of accuracy of digital PIV systems. Exp Fluids 27:107–116

    Article  Google Scholar 

  • Nogueira J, Lecuona A, Rodriguez PA (2001) Identification of a new source of peak locking, analysis and its removal in conventional and super-resolution PIV techniques. Exp Fluids 30:309–316

    Article  Google Scholar 

  • Ronneberger O, Raffel M, Kompenhans J (1998) Advanced evaluation algorithms for standard and dual plane particle image velocimetry. In: Proceedings of the 9th international symposium on applications of laser techniques to fluid mechanics. Lisbon, Portugal, Paper 10.1

  • Scarano F (2002) Iterative image deformation methods in PIV. Meas Sci Technol 13:R1–R19

    Article  CAS  Google Scholar 

  • Scarano F (2004) A super-resolution particle image velocimetry interrogation approach by means of velocity second derivatives correlation. Meas Sci Technol 15:475–486

    Article  CAS  Google Scholar 

  • Scarano F, Riethmuller ML (2000) Advances in iterative multigrid PIV image processing. Exp Fluids 29:S51–S60

    Article  Google Scholar 

  • Stanislas M, Okamoto K, Kähler C (2003) Main results of the first international PIV challenge. Meas Sci Technol 14(10):R63–R89

    Article  CAS  Google Scholar 

  • Tokumaru OT, Dimotakis PE (1995) Image correlation velocimetry. Exp Fluids 19:1–15

    Article  Google Scholar 

  • Willert CE (2000) Evaluation of digital PIV recordings. In: Application of particle image velocimetry—theory and practice, course notes, 6–10 March 2000, DLR Göttingen, Germany

  • Young CN, Johnson DA, Weckman EJ (2004) A method to anchor displacement vectors to reduce uncertainty and improve particle image velocimetry results. Meas Sci Technol 15:9–20

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding from the Deutsche Forschungsgemeinschaft under grant Tr 194/21 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Nobach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nobach, H., Tropea, C. Improvements to PIV image analysis by recognizing the velocity gradients. Exp Fluids 39, 614–622 (2005). https://doi.org/10.1007/s00348-005-1001-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-005-1001-9

Keywords

Navigation