Log in

Aluminum Toxicity in Plants: Present and Future

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Toxic aluminum ions (Al3+) found in acidic soils are absorbed by plants and interact with multiple sites during plant development, affecting especially the root growth. The mechanisms by which plants cope with Al3+ stress are variable, and Al3+ can be excluded or accumulated internally. The molecular and physiological mechanisms associated with Al3+ response have been substantially studied. Thus, reviewing the findings about these mechanisms is important to portrait the state-of-the-art of Al3+ response in plants, highlight key results, identify research gaps, and ask new questions. In this paper, we discuss the current knowledge about DNA damage response induced by Al3+, as well as membrane transporters that avoid Al3+ toxicity in the apoplast, Al3+ exclusion mechanisms, how Al3+ influences plant nutrition, signaling pathways evoked by Al3+ affecting gene expression, changes in plant growth regulators concentrations caused by Al3+ toxicity, and beneficial effects of microorganisms on plants exposed to Al3+ stress. The future research on these topics is also discussed. The current and future knowledge of how plants cope with Al3+ stress is important to comprehend the inter- and intraspecies variability of Al3+ response and to pave the way for new molecular breeding targets that can improve plant performance under Al3+ stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abd El-Daim IA, Bejai S, Meijer J (2019) Bacillus velezensis 5113 induced metabolic and molecular reprogramming during abiotic stress tolerance in wheat. Sci Rep 9:16282

    PubMed  PubMed Central  Google Scholar 

  • Abdullahi BA, Gu XG, Gan QL, Yang YH (2003) Brassinolide amelioration of aluminium toxicity in mung bean seedling growth. J Plant Nutr 26:1725–1734

    CAS  Google Scholar 

  • Abou-Aly HE, Youssef AM, Tewfike TA et al (2021) Reduction of heavy metals bioaccumulation in sorghum and its rhizosphere by heavy metals-tolerant bacterial consortium. Biocatal Agric Biotech 31:101911

    CAS  Google Scholar 

  • Agnihotri R, Sharma MP, Prakash A et al (2022) Glycoproteins of arbuscular mycorrhiza for soil carbon sequestration: Review of mechanisms and controls. Sci Total Environ 806:150571

    CAS  PubMed  Google Scholar 

  • Aguilera JG, Minozzo JA, Barichello D et al (2016) Alleles of organic acid transporter genes are highly correlated with wheat resistance to acidic soil in field conditions. Theor Appl Genet 129:1317–1331

    CAS  PubMed  Google Scholar 

  • Ahanger MA, Ashraf M, Bajguz A, Ahmad P (2018) Brassinosteroids regulate growth in plants under stressful environments and crosstalk with other potential phytohormones. J Plant Growth Regul 37:1007–1024

    CAS  Google Scholar 

  • Ahmad P, Alyemeni MN, Wijaya L et al (2017) Jasmonic acid alleviates negative impacts of cadmium stress by modifying osmolytes and antioxidants in faba bean (Vicia faba L.). Arch Agron Soil Sci 63:1889–1899

    CAS  Google Scholar 

  • Ahn SJ, Sivaguru M, Chung GC et al (2002) Aluminium-induced growth inhibition is associated with impaired efflux and influx of H+ across the plasma membrane in root apices of squash (Cucurbita pepo). J Exp Bot 53:1959–1966

    CAS  PubMed  Google Scholar 

  • Ahn SJ, Rengel Z, Matsumoto H (2004) Aluminum-induced plasma membrane surface potential and H+-ATPase activity in near-isogenic wheat lines differing in tolerance to aluminum. New Phytol 162:71–79

    CAS  Google Scholar 

  • Ali B (2017) Salicylic acid induced antioxidant system enhances the tolerence to aluminium in mung bean (Vigna radiata L. Wilczek) plants. Indian J Plant Physiol 22:178–189

    CAS  Google Scholar 

  • Ali B, Hasan SA, Hayat S et al (2008) A role of brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L.) Wilczek. Environ Exp Bot 62:153–159

    CAS  Google Scholar 

  • An GH, Miyakawa S, Kawahara A et al (2008) Community structure of arbuscular mycorrhizal fungi associated with pioneer grass species Miscanthus sinensis in acid sulfate soils: Habitat segregation along pH gradients. Soil Sci Plant Nutr 54:517–528

    Google Scholar 

  • Andersson MX, Stridh MH, Larsson KE et al (2003) Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol. FEBS Lett 537:128–132

    CAS  PubMed  Google Scholar 

  • Anwar A, Liu Y, Dong R et al (2018) The physiological and molecular mechanism of brassinosteroid in response to stress: a review. Biol Res 51:46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arbelaez JD, Maron LG, Jobe TO et al (2017) ALUMINUM RESISTANCE TRANSCRIPTION FACTOR 1 (ART1) contributes to natural variation in aluminum resistance in diverse genetic backgrounds of rice (O. sativa). Plant Direct 1:e00014

    PubMed  PubMed Central  Google Scholar 

  • Arenhart RA, de Lima JC, Pedron M et al (2013) Involvement of ASR genes in aluminium tolerance mechanisms in rice. Plant Cell Environ 36:52–67

    CAS  PubMed  Google Scholar 

  • Arif Y, Sami F, Siddiqui H et al (2020) Salicylic acid in relation to other phytohormones in plant: A study towards physiology and signal transduction under challenging environment. Environ Exp Bot 175:104040

    CAS  Google Scholar 

  • Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8

    CAS  PubMed  Google Scholar 

  • Balzergue C, Dartevelle T, Godon C et al (2017) Low phosphate activates STOP1-ALMT1 to rapidly inhibit root cell elongation. Nat Commun 8:15300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bartlett RJ, Riego DC (1972) Effect of chelation on the toxicity of aluminum. Plant Soil 37:419–423

    CAS  Google Scholar 

  • Begum N, Qin C, Ahanger MA et al (2019) Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Front Plant Sci 2019:1068

    Google Scholar 

  • Bender KW, Dobney S, Ogunrinde A et al (2014) The calmodulin-like protein CML43 functions as a salicylic-acid-inducible root-specific Ca2+ sensor in Arabidopsis. Biochem J 457:127–136

    CAS  PubMed  Google Scholar 

  • Biasini M, Bienert S, Waterhouse A et al (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biedermann S, Harashima H, Chen P et al (2017) The retinoblastoma homolog RBR 1 mediates localization of the repair protein RAD 51 to DNA lesions in Arabidopsis. EMBO J 36:1279–1297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bilal S, Shahzad R, Khan AL et al (2018) Endophytic microbial consortia of phytohormones-producing fungus Paecilomyces formosus LHL10 and bacteria Sphingomonas sp. LK11 to Glycine max L. regulates physio-hormonal changes to attenuate aluminum and zinc stresses. Front Plant Sci 9:1273

    PubMed  PubMed Central  Google Scholar 

  • Bittencourt BMOC, Silva CMS, Zanão Filho S, Habermann G (2020) Aluminum (Al)-induced organic acid exudation in an Al-accumulating species from the Brazilian savana. Trees 34:155–162

    Google Scholar 

  • Bortolin GS, Teixeira SB, Pinheiro RM et al (2020) Seed priming with salicylic acid minimizes oxidative effects of aluminum on Trifolium seedlings. J Soil Sci Plant Nutr 20:2502–2511

    CAS  Google Scholar 

  • Bose J, Babourina O, Shabala S, Rengel Z (2010) Aluminium-induced ion transport in Arabidopsis: the relationship between Al tolerance and root ion flux. J Exp Bot 61:3163–3175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bose J, Babourina O, Rengel Z (2011) Role of magnesium in alleviation of aluminium toxicity in plants. J Exp Bot 62:2251–2264

    CAS  PubMed  Google Scholar 

  • Boyer JS (2009) Cell wall biosynthesis and the molecular mechanism of plant enlargement. Funct Plant Biol 36:383–394

    CAS  PubMed  Google Scholar 

  • Bozzi AT, Gaudet R (2021) Molecular mechanism of Nramp-family transition metal transport. J Mol Biol 433:166991

    CAS  PubMed  PubMed Central  Google Scholar 

  • Broadley M, Brown P, Cakmak I et al (2012) Functions of nutrient: Micronutrients. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants, 3rd edn. Elsevier, Oxford, pp 243–248

    Google Scholar 

  • Brunner I, Sperisen C (2013) Aluminum exclusion and aluminum tolerance in woody plants. Front Plant Sci 4:172

    PubMed  PubMed Central  Google Scholar 

  • Caracciolo AB, Terenzi V (2021) Rhizosphere microbial communities and heavy metals. Microorganisms 9:1462

    Google Scholar 

  • Carvalho G Jr, Schaffert RE, Malosetti M et al (2016) Back to acid soil fields: The citrate transporter SbMATE is a major asset for sustainable grain yield for sorghum cultivated on acid soils. G3 Genes Genom Genet 6:475–484

    CAS  Google Scholar 

  • Cavalheiro MF, Gavassi MA, Silva GS et al (2020) Low root PIP1-1 and PIP2 aquaporins expression could be related to reduced hydration in ‘Rangpur’lime plants exposed to aluminium. Funct Plant Biol 47:112–121

    CAS  PubMed  Google Scholar 

  • Chandra J, Keshavkant S (2021) Mechanisms underlying the phytotoxicity and genotoxicity of aluminum and their alleviation strategies: A review. Chemosphere 28:130384

    Google Scholar 

  • Chaudhary K, Khan S (2018) Role of plant growth promoting bacteria (PGPB) for bioremediation of heavy metals: an overview. In: Bharti PK, Rathoure AK (eds) Biostimulation remediation technologies for groundwater contaminants. IGI Global, Hershey, pp 104–125

    Google Scholar 

  • Che J, Tsutsui T, Yokosho K et al (2018a) Functional characterization of an aluminum (Al)-inducible transcription factor, ART 2, revealed a different pathway for Al tolerance in rice. New Phytol 220:209–218

    CAS  PubMed  Google Scholar 

  • Che J, Yamaji N, Yokosho K et al (2018b) Two genes encoding a bacterial-type ATP-binding cassette transporter are implicated in aluminum tolerance in buckwheat. Plant Cell Physiol 59:2502–2511

    CAS  PubMed  Google Scholar 

  • Chen ZC, Ma JF (2013) Magnesium transporters and their role in Al tolerance in plants. Plant Soil 368:51–56

    CAS  Google Scholar 

  • Chen ZC, Liao H (2016) Organic acid anions: An effective defensive weapon for plants against aluminum toxicity and phosphorus deficiency in acidic soils. J Genet Genom 43:631–638

    Google Scholar 

  • Chen ZC, Yamaji N, Motoyama R et al (2012) Up-regulation of a magnesium transporter gene OsMGT1 is required for conferring aluminum tolerance in rice. Plant Physiol 159:1624–1633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Shao Q, Yin L et al (2019a) Polyamine function in plants: Metabolism, regulation on development, and roles in abiotic stress responses. Front Plant Sci 9:1945

    PubMed  PubMed Central  Google Scholar 

  • Chen P, Sjogren CA, Larsen PB, Schnittger A (2019b) A multi-level response to DNA damage induced by aluminium. Plant J 98:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Tang L, Wang J et al (2022) Research advances in the mutual mechanisms regulating response of plant roots to phosphate deficiency and aluminum toxicity. Int J Mol Sci 23:1137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng X, Fang T, Zhao E et al (2020) Protective roles of salicylic acid in maintaining integrity and functions of photosynthetic photosystems for alfalfa (Medicago sativa L.) tolerance to aluminum toxicity. Plant Physiol Biochem 155:570–578

    CAS  PubMed  Google Scholar 

  • Čiamporová M (2002) Morphological and structural responses of plant roots to aluminium at organ, tissue, and cellular levels. Biol Plant 45:161–171

    Google Scholar 

  • Collins NC, Shirley NJ, Saeed M et al (2008) An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L.). Genetics 179:669–682

    CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras R, Figueiras AM, Gallego FJ, Benito C (2014) Brachypodium distachyon: a model species for aluminium tolerance in Poaceae. Funct Plant Biol 41:270–1283

    Google Scholar 

  • Corrales I, Poschenrieder C, Barceló J (2008) Boron-induced amelioration of aluminium toxicity in a monocot and a dicot species. J Plant Physiol 165:504–513

    CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    CAS  PubMed  Google Scholar 

  • Coughlan AP, Dalpé Y, Lapointe L, Piché Y (2000) Soil pH-induced changes in root colonization, diversity, and reproduction of symbiotic arbuscular mycorrhizal fungi from healthy and declining maple forests. Can J for Res 30:1543–1554

    Google Scholar 

  • Culligan KM, Robertson CE, Foreman J et al (2006) ATR and ATM play both distinct and additive roles in response to ionizing radiation. Plant J 48:947–961

    CAS  PubMed  Google Scholar 

  • Dai C, Qiu L, Guo L et al (2019) Salicylic acid alleviates aluminum-induced inhibition of biomass by enhancing photosynthesis and carbohydrate metabolism in Panax notoginseng. Plant Soil 445:183–198

    Google Scholar 

  • Daspute AA, Kobayashi Y, Panda SK et al (2018) Characterization of CcSTOP1; a C2H2-type transcription factor regulates Al tolerance gene in pigeonpea. Planta 247:201–214

    CAS  PubMed  Google Scholar 

  • de la Fuente JM, Ramírez-Rodríguez V, Cabrera-Ponce JL, Herrera-Estrella L (1997) Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566–1568

    PubMed  Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol 103:695–702

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delhaize E, Ma JF, Ryan PR (2012) Transcriptional regulation of aluminium tolerance genes. Trends Plant Sci 17:341–348

    CAS  PubMed  Google Scholar 

  • Deng W, Luo K, Li D et al (2006) Overexpression of an Arabidopsis magnesium transport gene, AtMGT1, in Nicotiana benthamiana confers Al tolerance. J Exp Bot 57:4235–4243

    CAS  PubMed  Google Scholar 

  • Deshmukh RK, Sonah H, Bélanger RR (2016) Plant aquaporins: Genome-wide identification, transcriptomics, proteomics, and advanced analytical tools. Front Plant Sci 7:1896

    PubMed  PubMed Central  Google Scholar 

  • Dhalaria R, Kumar D, Kumar H et al (2020) Arbuscular mycorrhizal fungi as potential agents in ameliorating heavy metal stress in plants. Agronomy 10:815

    CAS  Google Scholar 

  • Diego N, Spíchal L (2020) Use of plant metabolites to mitigate stress effects in crops. In: Geelen D, Xu L (eds) The chemical biology of plant biostimulants. Wiley, Hoboken, pp 261–300

    Google Scholar 

  • Ding ZJ, Yan JY, Xu XY et al (2013) WRKY46 functions as a transcriptional repressor of ALMT1, regulating aluminum-induced malate secretion in Arabidopsis. Plant J 76:825–835

    CAS  PubMed  Google Scholar 

  • Domingos P, Prado AM, Wong A et al (2015) Nitric oxide: A multitasked signaling gas in plants. Mol Plant 8:506–520

    CAS  PubMed  Google Scholar 

  • Doncheva S, Amenos M, Poschenrieder C, Barceló J (2005) Root cell patterning: a primary target for aluminium toxicity in maize. J Exp Bot 56:1213–1220

    CAS  PubMed  Google Scholar 

  • Dong D, Peng X, Yan X (2004) Organic acid exudation induced by phosphorus deficiency and/or aluminium toxicity in two contrasting soybean genotypes. Physiol Plant 122:190–199

    CAS  Google Scholar 

  • Dong DF, Li YR, Jiang LG (2008) Effects of brassinosteroid on photosynthetic characteristics in soybean under aluminum stress. Acta Agron Sin 34:1673–1678

    CAS  Google Scholar 

  • Dong J, Hunt J, Delhaize E, Tang C (2018) The impact of elevated CO2 on acid-soil tolerance of hexaploid wheat (Triticum aestivum L.) genotypes varying in organic anion efflux. Plant Soil 428:401–413

    CAS  Google Scholar 

  • Dong J, Grylls S, Hunt J et al (2019) Elevated CO2 (free-air CO2 enrichment) increases grain yield of aluminium-resistant but not aluminium-sensitive wheat (Triticum aestivum) grown in an acid soil. Ann Bot 123:461–468

    CAS  PubMed  Google Scholar 

  • Duan W, Lu F, Cui Y et al (2022) Genome-wide identification and characterisation of wheat MATE genes reveals their roles in aluminium tolerance. Int J Mol Sci 23:4418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emamverdian A, Ding Y, **e Y (2020) The role of new members of phytohormones in plant amelioration under abiotic stress with an emphasis on heavy metals. Pol J Environ Stud 29:1009–1020

    CAS  Google Scholar 

  • Etcheverría P (2009) Glomalin in evergreen forest associations, deciduous forest and a plantation of Pseudotsuga menziesii in the X Región, Chile. PhD dissertation, Universidad de La Frontera

  • Eticha D, Stass A, Horst WJ (2005a) Cell-wall pectin and its degree of methylation in the maize root-apex: significance for genotypic differences in aluminium resistance. Plant Cell Environ 28:1410–1420

    CAS  Google Scholar 

  • Eticha D, Staß A, Horst WJ (2005b) Localization of aluminium in the maize root apex: can morin detect cell wall-bound aluminium? J Exp Bot 56:1351–1357

    CAS  PubMed  Google Scholar 

  • Fang Q, Zhang J, Zhang Y et al (2020) Regulation of aluminum resistance in Arabidopsis involves the SUMOylation of the zinc finger transcription factor STOP1. Plant Cell 32:3921–3938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fang Q, Zhang J, Yang DL, Huang CF (2021a) The SUMO E3 ligase SIZ1 partially regulates STOP1 SUMOylation and stability in Arabidopsis thaliana. Plant Signal Behav 16:e1899487

    Google Scholar 

  • Fang Q, Zhou F, Zhang Y et al (2021b) Degradation of STOP1 mediated by the F-box proteins RAH1 and RAE1 balances aluminum resistance and plant growth in Arabidopsis thaliana. Plant J 106:493–506

    CAS  PubMed  Google Scholar 

  • Farh ME, Kim YJ, Sukweenadhi J et al (2017) Aluminium resistant, plant growth promoting bacteria induce overexpression of Aluminium stress related genes in Arabidopsis thaliana and increase the ginseng tolerance against Aluminium stress. Microbiol Res 200:45–52

    CAS  PubMed  Google Scholar 

  • Fariduddin Q, Mir BA, Yusuf M, Ahmad A (2014) 24-epibrassinolide and/or putrescine trigger physiological and biochemical responses for the salt stress mitigation in Cucumis sativus L. Photosynthetica 52:464–474

    CAS  Google Scholar 

  • Farvardin A, González-Hernández AI, Llorens E et al (2020) The apoplast: A key player in plant survival. Antioxidants 9:604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng X, Liu W, Dai H et al (2020) HvHOX9, a novel homeobox leucine zipper transcription factor revealed by root miRNA and RNA sequencing in Tibetan wild barley, positively regulates Al tolerance. J Exp Bot 71:6057–6073

    CAS  PubMed  Google Scholar 

  • Fernando DR, Lynch JP (2015) Manganese phytotoxicity: new light on an old problem. Ann Bot 116:313–319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira JR, Minella E, Delatorre CA et al (2018) Conventional and transgenic strategies to enhance the acid soil tolerance of barley. Mol Breed 38:12

    Google Scholar 

  • Figueroa-Bustos V, Palta JA, Chen Y et al (2020) Wheat cultivars with contrasting root system size responded differently to terminal drought. Front Plant Sci 11:1285

    PubMed  PubMed Central  Google Scholar 

  • Foy CD (1984) Physiological effects of hydrogen, aluminum, and manganese toxicities in acid soil. In: Adams F (ed) Soil acidity and liming. American Society of Agronomy, Madison, pp 57–97

    Google Scholar 

  • Fujii M, Yokosho K, Yamaji N et al (2012) Acquisition of aluminium tolerance by modification of a single gene in barley. Nat Commun 3:713

    PubMed  Google Scholar 

  • Fung KF, Carr HP, Zhang J, Wong MH (2008) Growth and nutrient uptake of tea under different aluminium concentrations. J Sci Food Agric 88:1582–1591

    CAS  Google Scholar 

  • Furukawa J, Yamaji N, Wang H et al (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48:1081–1091

    CAS  PubMed  Google Scholar 

  • Garzón T, Gunsé B, Moreno AR et al (2011) Aluminium-induced alteration of ion homeostasis in root tip vacuoles of two maize varieties differing in Al tolerance. Plant Sci 180:709–715

    PubMed  Google Scholar 

  • Gassmann W, Schroeder JI (1994) Inward-rectifying K+ channels in root hairs of wheat: A mechanism for aluminum-sensitive low-affinity K+ uptake and membrane potential control. Plant Physiol 105:1399–1408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaume A, Mächler F, Frossard E (2001) Aluminum resistance in two cultivars of Zea mays L.: Root exudation of organic acids and influence of phosphorus nutrition. Plant Soil 234:73–81

    CAS  Google Scholar 

  • Gavassi MA, Dodd IC, Puértolas J et al (2020) Aluminum-induced stomatal closure is related to low root hydraulic conductance and high ABA accumulation. Environ Exp Bot 179:104233

    CAS  Google Scholar 

  • Gavassi MA, Silva GS, Silva CMS et al (2021) NCED expression is related to increased ABA biosynthesis and stomatal closure under aluminum stress. Environ Exp Bot 185:104404

    CAS  Google Scholar 

  • Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581:2204–2214

    CAS  PubMed  Google Scholar 

  • George E, Horst WJ, Neumann E (2012) Adaptation of plants to adverse chemical soil conditions. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants, 3rd edn. Elsevier, Oxford, pp 409–472

    Google Scholar 

  • Giannakoula A, Moustakas M, Mylona P et al (2007) Aluminum tolerance in maize is correlated with increased levels of mineral nutrients, carbohydrates and proline, and decreased levels of lipid peroxidation and Al accumulation. J Plant Physiol 165:385–396

    PubMed  Google Scholar 

  • Gimenez E, Manzano-Agugliaro F (2017) DNA damage repair system in plants: A worldwide research update. Genes 8:299

    PubMed  PubMed Central  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    CAS  PubMed  Google Scholar 

  • Godon C, Mercier C, Wang X et al (2019) Under phosphate starvation conditions, Fe and Al trigger accumulation of the transcription factor STOP1 in the nucleus of Arabidopsis root cells. Plant J 99:937–949

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonçalves JF, Cambraia J, Moequim PR, Araujo EF (2005) Aluminium effect on organic acid production and accumulation in sorghum. J Plant Nutr 28:507–520

    Google Scholar 

  • Guo J, Zhang Y, Gao H et al (2020) Mutation of HPR1 encoding a component of the THO/TREX complex reduces STOP1 accumulation and aluminium resistance in Arabidopsis thaliana. New Phytol 228:179–193

    CAS  PubMed  Google Scholar 

  • Hajiboland R (2013) Role of arbuscular mycorrhiza in amelioration of salinity. In: Ahmad P, Azooz MM, Prasad MNV (eds) Salt stress in plants: Signalling, omics and adaptations. Springer, New York, pp 301–354

    Google Scholar 

  • Hajiboland R, Salehi SY (2014) Remobilization of phosphorus in tea plants. J Plant Nutr 37:1522–1533

    CAS  Google Scholar 

  • Hajiboland R, Barceló J, Poschenrieder C, Tolrà R (2013a) Amelioration of iron toxicity: A mechanism for aluminum-induced growth stimulation in tea plants. J Inorg Biochem 128:183–187

    CAS  PubMed  Google Scholar 

  • Hajiboland R, Rad SB, Barceló J, Poschenrieder C (2013b) Mechanisms of aluminum-induced growth stimulation in tea (Camellia sinensis). J Plant Nutr Soil Sci 176:616–625

    CAS  Google Scholar 

  • Hajiboland R, Bahrami-Rad S, Bastani S (2014) Aluminum alleviates boron-deficiency induced growth impairment in tea plants. Biol Plant 58:717–724

    Google Scholar 

  • Hajiboland R, Sadeghzadeh N, Moradtalab N et al (2020) The arbuscular mycorrhizal mycelium from barley differentially influences various defense parameters in the non-host sugar beet under co-cultivation. Mycorrhiza 30:647–661

    CAS  PubMed  Google Scholar 

  • Han C, Zhang P, Ryan PR et al (2016) Introgression of genes from bread wheat enhances the aluminium tolerance of durum wheat. Theor Appl Genet 129:729–739

    CAS  PubMed  Google Scholar 

  • Hawkesford M, Horst W, Kichey T et al (2012) Functions of macronutrients. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants, 3rd edn. Elsevier, Oxford, pp 135–189

    Google Scholar 

  • Hayes JE, Ma JF (2003) Al-induced efflux of organic acid anions is poorly associated with internal organic acid metabolism in triticale roots. J Exp Bot 54:1753–1759

    CAS  PubMed  Google Scholar 

  • He H, He L, Gu M (2012a) Interactions between nitric oxide and plant hormones in aluminum tolerance. Plant Signal Behav 7:469–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • He H, Zhan J, He L, Gu M (2012b) Nitric oxide signaling in aluminum stress in plants. Protoplasma 249:483–492

    CAS  PubMed  Google Scholar 

  • He H, He L, Gu M (2014) Role of microRNAs in aluminum stress in plants. Plant Cell Rep 33:831–836

    CAS  PubMed  Google Scholar 

  • Hemada M, Mohamed HE, Saber NES, El-Ekeili AM (2020) Role of salicylic acid in alleviation of aluminum effects on growth and biochemical processes in lupin (Lupinus termis L.) plant. Egypt J Bot 60:287–300

    Google Scholar 

  • Higo M, Isobe K, Kang DJ et al (2011) Molecular diversity and spore density of indigenous arbuscular mycorrhizal fungi in acid sulfate soil in Thailand. Ann Microbiol 61:383–389

    Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    CAS  PubMed  Google Scholar 

  • Horst WJ, Wang Y, Eticha D (2010) The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review. Ann Bot 106:185–197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CF, Yamaji N, Mitani N et al (2009) A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell 21:655–667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CF, Yamaji N, Ma JF (2010) Knockout of a bacterial-type ATP-binding cassette transporter gene, AtSTAR1, results in increased aluminum sensitivity in Arabidopsis. Plant Physiol 153:1669–1677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CF, Yamaji N, Chen Z, Ma JF (2012) A tonoplast-localized half-size ABC transporter is required for internal detoxification of aluminum in rice. Plant J 69:857–867

    CAS  PubMed  Google Scholar 

  • Islam MS, Kormoker T, Idris AM et al (2021) Plant-microbe-metal interactions for heavy metal bioremediation: a review. Crop Pasture Sci 73:181–201

    Google Scholar 

  • Iuchi S, Koyama H, Iuchi A et al (2007) Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc Natl Acad Sci USA 104:9900–9905

    PubMed  PubMed Central  Google Scholar 

  • Iuchi S, Kobayashi Y, Koyama H, Kobayashi M (2008) STOP1, a Cys2/His2 type zinc-finger protein, plays critical role in acid soil tolerance in Arabidopsis. Plant Signal Behav 3:128–130

    PubMed  PubMed Central  Google Scholar 

  • Jajoo A, Mathur S (2021) Role of arbuscular mycorrhizal fungi as an underground saviuor for protecting plants from abiotic stresses. Physiol Mol Biol Plants 27:2589–2603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jemo M, Abaidoo RC, Nolte C, Horst WJ (2007) Aluminum resistance of cowpea as affected by phosphorus-deficiency stress. J Plant Physiol 164:442–451

    CAS  PubMed  Google Scholar 

  • Jiang HX, Tang N, Zheng JG, Chen LS (2009a) Antagonistic actions of boron against inhibitory effects of aluminum toxicity on growth, CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, and photosynthetic electron transport probed by the JIP-test, of Citrus grandis seedlings. BMC Plant Biol 9:102

    PubMed  PubMed Central  Google Scholar 

  • Jiang HX, Tang N, Zheng JG et al (2009b) Phosphorus alleviates aluminum-induced inhibition of growth and photosynthesis in Citrus grandis seedlings. Physiol Plant 137:298–311

    CAS  PubMed  Google Scholar 

  • **g Y, He Z, Yang X (2007) Role of soil rhizobacteria in phytoremediationof heavy metal contaminated soils. J Zhejiang Univ Sci B 8:192–207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DL, Kochian LV, Gilroy S (1998) Aluminum induces a decrease in cytosolic calcium concentration in BY-2 tobacco cell cultures. Plant Physiol 116:81–89

    CAS  PubMed Central  Google Scholar 

  • Kar D, Bhagavatula L, Dutta A, Datta S (2021a) Conserved functions of MATE transporters and their potential to enhance plant tolerance to aluminium toxicity. J Plant Biochem Biotechnol 30:1008–1015

    CAS  Google Scholar 

  • Kar D, Pradhan AA, Datta S (2021b) The role of solute transporters in aluminum toxicity and tolerance. Physiol Plant 171:638–652

    CAS  PubMed  Google Scholar 

  • Kaur S, Suseela V (2020) Unraveling arbuscular mycorrhiza-induced changes in plant primary and secondary metabolome. Metabolites 10:335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawano T, Kadono T, Fumoto K et al (2004) Aluminum as a srenpecific inhibitor of plant TPC1 Ca2+ channels. Biochem Biophys Res Commun 324:40–45

    CAS  PubMed  Google Scholar 

  • Kawasaki A, Dennis PG, Forstner C et al (2021) Manipulating exudate composition from root apices shapes the microbiome throughout the root system. Plant Physiol 187:2279–2295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kitagawa T, Morishita T, Tachibana Y et al (1986) Differential aluminum resistance of wheat varieties and organic acid secretion. Jpn J Soil Sci Plant Nutr 57:352–358

    CAS  Google Scholar 

  • Klugh-Stewart K, Cumming JR (2009) Organic acid exudation by mycorrhizal Andropogon virginicus L. (broomsedge) roots in response to aluminum. Soil Biol Biochem 41:367–373

    CAS  Google Scholar 

  • Kobayashi Y, Kobayashi Y, Watanabe T et al (2013) Molecular and physiological analysis of Al3+ and H+ rhizotoxicities at moderately acidic conditions. Plant Physiol 163:180–192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi Y, Ohyama Y, Kobayashi Y et al (2014) STOP2 activates transcription of several genes for Al- and low pH-tolerance that are regulated by STOP1 in Arabidopsis. Mol Plant 7:311–322

    CAS  PubMed  Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Ann Rev Plant Physiol Plant Mol Biol 46:237–260

    CAS  Google Scholar 

  • Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    CAS  PubMed  Google Scholar 

  • Kohorn BD, Kohorn SL (2012) The cell wall-associated kinases, WAKs, as pectin receptors. Front Plant Sci 3:88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kollmeier M, Felle HH, Horst WJ (2000) Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum? Plant Physiol 122:945–956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kong X, Tian H, Ding Z (2017) Plant hormone signaling mediates plant growth plasticity in response to metal stress. In: Pandey GK (ed) Mechanism of plant hormone signaling under stress. Wiley, Hoboken, pp 223–235

    Google Scholar 

  • Kopittke PM (2016) Role of phytohormones in aluminium rhizotoxicity. Plant Cell Environ 39:2319–2328

    CAS  PubMed  Google Scholar 

  • Kopittke PM, Moore KL, Lombi E et al (2015) Identification of the primary lesion of toxic aluminum in plant roots. Plant Physiol 167:1402–1411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kopittke PM, McKenna BA, Karunakaran C et al (2017) Aluminum complexation with malate within the root apoplast differs between aluminum resistant and sensitive wheat lines. Front Plant Sci 8:1377

    PubMed  PubMed Central  Google Scholar 

  • Kumar N, Gautam A, Dubey AK et al (2019) GABA mediated reduction of arsenite toxicity in rice seedling through modulation of fatty acids, stress responsive amino acids and polyamines biosynthesis. Ecotoxicol Environ Saf 173:15–27

    CAS  PubMed  Google Scholar 

  • Lambais MR, Cardoso EJ (1989) Effects of aluminium on germination of spores and germ tube growth of VAM fungi. Rev Bras Cienc Solo 13:151–154

    CAS  Google Scholar 

  • Lan T, You J, Kong L et al (2016) The interaction of salicylic acid and Ca2+ alleviates aluminum toxicity in soybean (Glycine max L.). Plant Physiol Biochem 98:145–154

    Google Scholar 

  • Lan Y, Chai Y, **ng C et al (2021) Nitric oxide reduces the aluminum-binding capacity in rice root tips by regulating the cell wall composition and enhancing antioxidant enzymes. Ecotoxicol Environ Saf 208:111499

    CAS  PubMed  Google Scholar 

  • Larsen PB (2009) Unraveling the mechanisms underlying aluminum dependent root growth inhibition. In: Jenks MA, Wood AJ (eds) Genes for plant abiotic stress. Wiley-Blackwell, Ames, pp 113–142

    Google Scholar 

  • Larsen PB, Tai CY, Kochian LV, Howell SH (1996) Arabidopsis mutants with increased sensitivity to aluminum. Plant Physiol 110:743–751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen PB, Geisler MJ, Jones CA et al (2005) ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J 41:353–363

    CAS  PubMed  Google Scholar 

  • Lastochkina O, Aliniaeifard S, Seifikalhor M et al (2019) Plant growth-promoting bacteria: Biotic strategy to cope with abiotic stresses in wheat. In: Hasanuzzaman M, Nahar K, Hossain A (eds) Wheat production in changing environments: Responses, adaptation and tolerance. Springer Nature Singapore, Singapore, pp 579–614

    Google Scholar 

  • Lefèvre F, Boutry M (2018) Towards identification of the substrates of ATP-binding cassette transporters. Plant Physiol 178:18–39

    PubMed  PubMed Central  Google Scholar 

  • Li JY, Liu J, Dong D et al (2014) Natural variation underlies alterations in Nramp aluminum transporter (NRAT1) expression and function that play a key role in rice aluminum tolerance. Proc Natl Acad Sci USA 111:6503–6508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li GZ, Wang ZQ, Yokosho K et al (2018) Transcription factor WRKY 22 promotes aluminum tolerance via activation of OsFRDL4 expression and enhancement of citrate secretion in rice (Oryza sativa). New Phytol 219:149–162

    CAS  PubMed  Google Scholar 

  • Li CX, Yan JY, Ren JY et al (2020) A WRKY transcription factor confers aluminum tolerance via regulation of cell wall modifying genes. J Integr Plant Biol 62:1176–1192

    CAS  PubMed  Google Scholar 

  • Liao H, Wan H, Shaff J et al (2006) Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance. Exudation of specific organic acids from different regions of the intact root system. Plant Physiol 141:674–684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lima J, Arenhart RA, Margis-Pinheiro M, Margis R (2011) Aluminum triggers broad changes in microRNA expression in rice roots. Genet Mol Res 10:2817–2832

    CAS  PubMed  Google Scholar 

  • Liu K, Luan S (2001) Internal aluminum block of plant inward K+ channels. Plant Cell 13:1453–1466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Magalhaes JV, Shaff J, Kochian LV (2009) Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J 57:389–399

    CAS  PubMed  Google Scholar 

  • Liu N, You J, Shi W et al (2012) Salicylic acid involved in the process of aluminum induced citrate exudation in Glycine max L. Plant Soil 352:85–97

    CAS  Google Scholar 

  • Liu J, Piñeros MA, Kochian LV (2014) The role of aluminum sensing and signaling in plant aluminum resistance. J Integr Plant Biol 56:221–230

    CAS  PubMed  Google Scholar 

  • Liu J, Zhou M, Delhaize E, Ryan PR (2017a) Altered expression of a malate-permeable anion channel, OsALMT4, disrupts mineral nutrition. Plant Physiol 175:1745–1759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu N, Song F, Zhu X et al (2017b) Salicylic acid alleviates aluminum toxicity in soybean roots through modulation of reactive oxygen species metabolism. Front Chem 5:96

    PubMed  PubMed Central  Google Scholar 

  • Liu J, Xu M, Estavillo GM et al (2018a) Altered expression of the malate-permeable anion channel OsALMT4 reduces the growth of rice under low radiance. Front Plant Sci 9:542

    PubMed  PubMed Central  Google Scholar 

  • Liu MY, Lou HQ, Chen WW et al (2018b) Two citrate transporters coordinately regulate citrate secretion from rice bean root tip under aluminum stress. Plant Cell Environ 41:809–822

    CAS  PubMed  Google Scholar 

  • Liu Y, Xu J, Guo S et al (2020) AtHB7/12 regulate root growth in response to aluminum stress. Int J Mol Sci 21:4080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Bai C, Chen Y et al (2022) Durum wheat with the introgressed TaMATE1B gene shows resistance to terminal drought by ensuring deep root growth in acidic and Al3+-toxic subsoils. Plant Soil. https://doi.org/10.1007/s11104-021-04961-6

    Article  Google Scholar 

  • Long Y, Tyerman SD, Gilliham M (2020) Cytosolic GABA inhibits anion transport by wheat ALMT1. New Phytol 225:671–678

    CAS  PubMed  Google Scholar 

  • Lou HQ, Fan W, ** JF et al (2020) A NAC-type transcription factor confers aluminium resistance by regulating cell wall-associated receptor kinase 1 and cell wall pectin. Plant Cell Environ 43:463–478

    CAS  PubMed  Google Scholar 

  • Lynch JP, Wojciechowski T (2015) Opportunities and challenges in the subsoil: pathways to deeper rooted crops. J Exp Bot 66:2199–2210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z, Miyasaka SC (1998) Oxalate exudation by taro in response to Al. Plant Physiol 118:861–865

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma JF, Zheng SJ, Matsumoto H, Hiradate S (1997) Detoxifying aluminium with buckwheat. Nature 390:569–570

    Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    CAS  PubMed  Google Scholar 

  • Ma JF, Shen R, Nagao S, Tanimoto E (2004) Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots. Plant Cell Physiol 45:583–589

    CAS  PubMed  Google Scholar 

  • Ma X, An F, Wang L et al (2020) Genome-wide identification of aluminum-activated malate transporter (ALMT) gene family in rubber trees (Hevea brasiliensis) highlights their involvement in aluminum detoxification. Forests 11:142

    Google Scholar 

  • MacKinnon N, Crowell KJ, Udir AK, Macdonald PM (2004) Aluminum binding to phosphatidylcholine bilayer membranes: 27Al and 31P NMR spectroscopic studies. Chem Phys Lipids 132:23–36

    CAS  PubMed  Google Scholar 

  • Maejima E, Watanabe T, Osaki M, Wagatsuma T (2014) Phosphorus deficiency enhances aluminum tolerance of rice (Oryza sativa) by changing the physicochemical characteristics of root plasma membranes and cell walls. J Plant Physiol 171:9–15

    CAS  PubMed  Google Scholar 

  • Magalhaes JV, Liu J, Guimaraes CT et al (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39(9):1156–1161

    CAS  PubMed  Google Scholar 

  • Mahmud JA, Hasanuzzaman M, Nahar K et al (2017) γ-aminobutyric acid (GABA) confers chromium stress tolerance in Brassica juncea L. by modulating the antioxidant defense and glyoxalase systems. Ecotoxicology 26:675–690

    PubMed  Google Scholar 

  • Marienfeld S, Stelzer R (1993) X-ray microanalyses in roots of Al-treated Avena sativa plants. J Plant Physiol 141:569–573

    CAS  Google Scholar 

  • Maron LG, Kirst M, Mao C et al (2008) Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots. New Phytol 179:116–128

    CAS  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London, p 889

    Google Scholar 

  • Matiello L, Begcy K, Silva FR et al (2014) Transcriptome analysis highlights changes in the leaves of maize plants cultivated in acidic soil. Mol Biol Rep 41:8107–8116

    Google Scholar 

  • Medeiros DB, Fernie AR, Araújo WL (2018) Discriminating the function (s) of guard cell ALMT channels. Trends Plant Sci 23:649–651

    CAS  PubMed  Google Scholar 

  • Melo JO, Martins LGC, Barros BA et al (2019) Repeat variants for the SbMATE transporter protect sorghum roots from aluminum toxicity by transcriptional interplay in cis and trans. Proc Natl Acad Sci USA 116:313–318

    CAS  PubMed  Google Scholar 

  • Mercier C, Roux B, Have M et al (2021) Root responses to aluminium and iron stresses require the SIZ1 SUMO ligase to modulate the STOP1 transcription factor. Plant J 108:1507–1521

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyasaka SC, Buta JG, Howell RK, Foy CD (1991) Mechanism of aluminum tolerance in snapbeans: Root exudation of citric acid. Plant Physiol 96:737–743

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz-Sanchez JA, Chan-May A, Cab-Guillén Y, Hernández-Sotomayor ST (2013) Effect of salicylic acid on the attenuation of aluminum toxicity in Coffea arabica L. suspension cells: A possible protein phosphorylation signaling pathway. J Inorg Biochem 128:188–195

    PubMed  Google Scholar 

  • Muthukumar T, Priyadharsini P, Uma E et al (2014) Role of arbuscular mycorrhizal fungi in alleviation of acidity stress on plant growth. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 1. Springer Science Business Media, New York, pp 43–71

    Google Scholar 

  • Nahar K, Hasanuzzaman M, Suzuki T, Fujita M (2017) Polyamines-induced aluminum tolerance in mung bean: A study on antioxidant defense and methylglyoxal detoxification systems. Ecotoxicology 26:58–73

    CAS  PubMed  Google Scholar 

  • Negishi T, Oshima K, Hattori M et al (2012) Tonoplast-and plasma membrane-localized aquaporin-family transporters in blue hydrangea sepals of aluminum hyperaccumulating plant. PLoS ONE 7:e43189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nezames CD, Sjogren CA, Barajas JF, Larsen PB (2012) The Arabidopsis cell cycle checkpoint regulators TANMEI/ALT2 and ATR mediate the active process of aluminum-dependent root growth inhibition. Plant Cell 24:608–621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen NT, Nakabayashi K, Thompson J, Fujita K (2003) Role of organic acids and phosphate exudation on aluminum-tolerance in four tropical woody plants. Tree Physiol 23:1041–1050

    CAS  PubMed  Google Scholar 

  • Nguyen NT, Hiep ND, Fujita K (2005) Iron enhances aluminum-induced leaf necrosis and plant growth inhibition in Eucalyptus camaldulensis. Plant Soil 277:139–152

    CAS  Google Scholar 

  • Nian H, Ahn SJ, Yang ZM, Matsumoto H (2003) Effect of phosphorus deficiency on aluminium-induced citrate exudation in soybean (Glycine max). Physiol Planta 117:229–236

    CAS  Google Scholar 

  • Nisa MU, Huang Y, Benhamed M, Raynaud C (2019) The plant DNA damage response: Signaling pathways leading to growth inhibition and putative role in response to stress conditions. Front Plant Sci 10:653

    PubMed  PubMed Central  Google Scholar 

  • Pacoda D, Montefusco A, Piro G, Dalessandro G (2004) Reactive oxygen species and nitric oxide affect cell wall metabolism in tobacco BY-2 cells. J Plant Physiol 161:1143–1156

    CAS  PubMed  Google Scholar 

  • Pan CL, Yao SC, **ong WJ et al (2017) Nitric oxide inhibits Al-induced programmed cell death in root tips of peanut (Arachis hypogaea L.) by affecting physiological properties of antioxidants systems and cell wall. Front Physiol 8:1037

    PubMed  PubMed Central  Google Scholar 

  • Pandey P, Srivastava RK, Dubey RS (2013) Salicylic acid alleviates aluminum toxicity in rice seedlings better than magnesium and calcium by reducing aluminum uptake, suppressing oxidative damage and increasing antioxidative defense. Ecotoxicology 22:656–670

    CAS  PubMed  Google Scholar 

  • Pedroza-Garcia JA, **ang Y, De Veylder L (2022) Cell cycle checkpoint control in response to DNA damage by environmental stresses. Plant J 109:490–507

    CAS  PubMed  Google Scholar 

  • Pellet DM, Grunes DL, Kochian LV (1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.). Planta 196:788–795

    CAS  Google Scholar 

  • Pellet DM, Papernik LA, Kochian LV (1996) Multiple aluminum-resistance mechanisms in wheat (roles of root apical phosphate and malate exudation). Plant Physiol 112:591–597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pellet DM, Papernik LA, Jones DL et al (1997) Involvement of multiple aluminium exclusion mechanisms in aluminium tolerance in wheat. Plant Soil 192:63–68

    CAS  Google Scholar 

  • Pereira JF (2021) Molecular breeding for improving aluminium resistance in wheat. In: Hossain MA, Alam M, Seneweera S et al (eds) Molecular breeding in wheat, maize and sorghum—Strategies for improving abiotic stress tolerance and yield. CABI International Severn, Gloucester, pp 116–145

    Google Scholar 

  • Pereira JF, Ryan PR (2019) The role of transposable elements in the evolution of aluminium resistance in plants. J Exp Bot 70:41–54

    CAS  PubMed  Google Scholar 

  • Pereira JF, Zhou G, Delhaize E et al (2010) Engineering greater aluminium resistance in wheat by over-expressing TaALMT1. Ann Bot 106:205–214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira JF, Barichello D, Ferreira JR et al (2015) TaALMT1 and TaMATE1B allelic variability in a collection of Brazilian wheat and its association with root growth on acidic soil. Mol Breed 35:169

    Google Scholar 

  • Piñeros MA, Magalhaes JV, Alves VMC, Kochian LV (2002) The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize. Plant Physiol 129:1194–1206

    PubMed  PubMed Central  Google Scholar 

  • Pishchik VN, Vorob’ev NI, Provorov NA, Khomyako YuV, (2016) Mechanisms of plant and microbial adaptation to heavy metals in plant-microbial systems. Microbiology 85:257–271

    CAS  Google Scholar 

  • Podlešáková K, Ugena L, Spichal L et al (2019) Phytohormones and polyamines regulate plant stress responses by altering GABA pathway. New Biotechnol 48:53–65

    Google Scholar 

  • Poschenrieder CH, Llugany M, Barceló J (1995) Short-term effects of pH and aluminium on mineral nutrition in maize varieties differing in proton and aluminium tolerance. J Plant Nutr 18:1495–1507

    CAS  Google Scholar 

  • Poschenrieder C, Gunsé B, Corrales I, Barceló J (2008) A glance into aluminum toxicity and resistance in plants. Sci Total Environ 400:356–368

    CAS  PubMed  Google Scholar 

  • Poschenrieder C, Busoms S, Barceló J (2019) How plants handle trivalent (+3) elements. Int J Mol Sci 20:3984

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Z, Tan H, Zhou S, Cao L (2014) Enhanced phytoremediation of toxic metals by inoculating endophytic Enterobacter sp. CBSB1 expressing bifunctional glutathione synthase. J Hazard Mater 267:17–20

    CAS  PubMed  Google Scholar 

  • Rajewska I, Talarek M, Bajguz A (2016) Brassinosteroids and response of plants to heavy metals action. Front Plant Sci 7:629

    PubMed  PubMed Central  Google Scholar 

  • Ramesh SA, Tyerman SD, Xu B et al (2015) GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters. Nat Commun 6:7879

    CAS  PubMed  Google Scholar 

  • Ramesh SA, Tyerman SD, Gilliham M, Xu B (2017) γ-Aminobutyric acid (GABA) signalling in plants. Cell Mol Life Sci 74:1577–1603

    CAS  PubMed  Google Scholar 

  • Ramesh SA, Kamran M, Sullivan W et al (2018) Aluminum-activated malate transporters can facilitate GABA transport. Plant Cell 30:1147–1164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rangel AF, Rao IM, Horst WJ (2009) Intracellular distribution and binding state of aluminum in root apices of two common bean (Phaseolus vulgaris) genotypes in relation to Al toxicity. Physiol Plant 135:162–173

    CAS  PubMed  Google Scholar 

  • Ranjan A, Sinha R, Sharma TR et al (2021) Alleviating aluminum toxicity in plants: Implications of reactive oxygen species signaling and crosstalk with other signaling pathways. Physiol Plant 173:1765–1784

    CAS  PubMed  Google Scholar 

  • Rashid U, Yasmin H, Hassan MN et al (2021) Drought-tolerant Bacillus megaterium isolated from semi-arid conditions induces systemic tolerance of wheat under drought conditions. Plant Cell Rep. https://doi.org/10.1007/s00299-020-02640-x

    Article  PubMed  Google Scholar 

  • Rengel Z (1992) Role of calcium in aluminium toxicity. New Phytol 121:499–513

    CAS  Google Scholar 

  • Rengel Z, Robinson DL (1989) Competitive Al3+ inhibition of net Mg2+ uptake by intact Lolium multiflorum roots: I. Kinetics Plant Physiol 91:1407–1413

    CAS  PubMed  Google Scholar 

  • Rengel Z, Zhang WH (2003) Role of dynamics of intracellular calcium in aluminium-toxicity syndrome. New Phytol 159:295–314

    CAS  PubMed  Google Scholar 

  • Rhaman MS, Imran S, Rauf F et al (2021) Seed priming with phytohormones: An effective approach for the mitigation of abiotic stress. Plants 10:37

    CAS  Google Scholar 

  • Riaz M, Kamran M, Fang Y et al (2021) Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. J Hazard Mater 402:123919

    CAS  PubMed  Google Scholar 

  • Richardson AE, George TS, Hens M et al (2022) Organic anions facilitate the mobilization of soil organic phosphorus and its subsequent lability to phosphatases. Plant Soil. https://doi.org/10.1007/s11104-022-05405-5

    Article  Google Scholar 

  • Roselló M, Poschenrieder C, Gunsé B et al (2015) Differential activation of genes related to aluminium tolerance in two contrasting rice cultivars. J Inorg Biochem 152:160–166

    PubMed  Google Scholar 

  • Rounds MA, Larsen PB (2008) Aluminum-dependent root-growth inhibition in Arabidopsis results from AtATR-regulated cell-cycle arrest. Curr Biol 18:1495–1500

    CAS  PubMed  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    CAS  PubMed  Google Scholar 

  • Russo MA, Quartacci MF, Izzo R et al (2007) Long- and short-term phosphate deprivation in bean roots: Plasma membrane lipid alterations and transient stimulation of phospholipases. Phytochemistry 68:1564–1571

    CAS  PubMed  Google Scholar 

  • Ryan PR, Delhaize E (2010) The convergent evolution of aluminium resistance in plants exploits a convenient currency. Funct Plant Biol 37:275–284

    CAS  Google Scholar 

  • Ryan PR, Delhaize E, Randall PJ (1995) Malate efflux from root apices and tolerance to aluminium are highly correlated in wheat. Funct Plant Biol 22:531–536

    CAS  Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Biol 52:527–560

    CAS  Google Scholar 

  • Ryan PR, Raman H, Gupta S et al (2009) A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol 149:340–351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan PR, James RA, Weligama C et al (2014) Can citrate efflux from roots improve phosphorus uptake by plants? Testing the hypothesis with near-isogenic lines of wheat. Physiol Plant 151:230–242

    CAS  PubMed  Google Scholar 

  • Saber NE, Abdel-Moneim AM, Barakat SY (1999) Role of organic acids in sunflower tolerance to heavy metals. Biol Plant 42:65–73

    CAS  Google Scholar 

  • Sadhukhan A, Kobayashi Y, Iuchi S, Koyama H (2021) Synergistic and antagonistic pleiotropy of STOP1 in stress tolerance. Trends Plant Sci 26:1014–1022

    CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Salehi SY, Hajiboland R (2008) A high internal phosphorus use efficiency in tea (Camellia sinensis L.) plants. Asian J Plant Sci 7:30–36

    CAS  Google Scholar 

  • Samac DA, Tesfaye M (2003) Plant improvement for tolerance to aluminum in acid soils—A review. Plant Cell Tissue Organ Cult 75:189–207

    CAS  Google Scholar 

  • Santos E, Benito C, Silva-Navas J et al (2018) Characterization, genetic diversity, phylogenetic relationships, and expression of the aluminum tolerance MATE1 gene in Secale species. Biol Plant 62:109–120

    CAS  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B et al (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    CAS  PubMed  Google Scholar 

  • Sasaki T, Ryan PR, Delhaize E et al (2006) Sequence upstream of the wheat (Triticum aestivum L.) ALMT1 gene and its relationship to aluminum resistance. Plant Cell Physiol 47:1343–1354

    CAS  PubMed  Google Scholar 

  • Sattelmacher B (2001) The apoplast and its significance for plant mineral nutrition. New Phytol 149:167–192

    CAS  PubMed  Google Scholar 

  • Schmohl N, Pilling J, Fisahn J, Horst WJ (2000) Pectin methylesterase modulates aluminium sensitivity in Zea mays and Solanum tuberosum. Physiol Plant 109:419–427

    CAS  Google Scholar 

  • Schroth G, Lehmann J, Barrios E (2003) Soil nutrient availability and acidity. In: Schroth G, Sinclair F (eds) Trees, crops and soil fertility: Concepts and research methods. CAB International, Wallingford, pp 93–130

    Google Scholar 

  • Schumacher K, Krebs M (2010) The V-ATPase: small cargo, large effects. Curr Opin Plant Biol 13:724–730

    CAS  PubMed  Google Scholar 

  • Seguel A, Cumming JR, Klugh-Stewart K et al (2013) The role of arbuscular mycorrhizas in decreasing aluminium phytotoxicity in acidic soils: a review. Mycorrhiza 23:167–183

    CAS  PubMed  Google Scholar 

  • Seifikalhor M, Aliniaeifard S, Bernard F et al (2020) γ-Aminobutyric acid confers cadmium tolerance in maize plants by concerted regulation of polyamine metabolism and antioxidant defense systems. Sci Rep 10:3356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sgroy V, Cassán F, Masciarelli O et al (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85:371–381

    CAS  PubMed  Google Scholar 

  • Sharma T, Dreyer I, Kochian L, Piñeros MA (2016) The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security. Front Plant Sci 7:1488

    PubMed  PubMed Central  Google Scholar 

  • Sharma A, Sidhu GPS, Araniti F et al (2020) The role of salicylic acid in plants exposed to heavy metals. Molecules 25:540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma K, Gupta S, Thokchom SD et al (2021) Arbuscular mycorrhiza-mediated regulation of polyamines and aquaporins during abiotic stress: Deep insights on the recondite players. Front Plant Sci 12:1072

    Google Scholar 

  • Shen H, He LF, Sasaki T et al (2005) Citrate secretion coupled with the modulation of soybean root tip under aluminum stress. Up-regulation of transcription, translation, and threonine-oriented phosphorylation of plasma membrane H+-ATPase. Plant Physiol 138:287–296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shoemaker SD, Vanderlick TK (2003) Calcium modulates the mechanical proper-ties of anionic phospholipid membranes. J Colloid Interface Sci 266:314–321

    CAS  PubMed  Google Scholar 

  • Shorrocks VM (1997) The occurrence and correction of boron deficiency. Plant Soil 193:121–148

    CAS  Google Scholar 

  • Silva CSM, Cavalheiro MF, Bressan ACG, Carvalho BMO, Banhos OFAA, Purgatto E, Harakava R, Tanaka FAO, Habermann G (2019) Aluminum-induced high IAA concentration may explain the Al susceptibility in Citrus limonia. Plant Growth Regul 87:123–137

  • Silva S, Pinto-Carnide O, Martins-Lopes P et al (2010) Differential aluminium changes on nutrient accumulation and root differentiation in an Al sensitive vs. tolerant wheat. Environ Exp Bot 68:91–98

    CAS  Google Scholar 

  • Silva GS, Gavassi MA, Nogueira MA, Habermann G (2018) Aluminum prevents stomatal conductance from responding to vapor pressure deficit in Citrus limonia. Environ Exp Bot 155:662–671

    CAS  Google Scholar 

  • Silva-Navas J, Benito C, Téllez-Robledo B et al (2012) The ScAACT1 gene at the Qalt5 locus as a candidate for increased aluminum tolerance in rye (Secale cereale L.). Mol Breed 30:845–856

    CAS  Google Scholar 

  • Silva-Navas J, Salvador N, Del Pozo JC et al (2021) The rye transcription factor ScSTOP1 regulates the tolerance to aluminum by activating the ALMT1 transporter. Plant Sci 310:110951

    CAS  PubMed  Google Scholar 

  • Singh Y, Ramteke P, Shukla PK (2013) Isolation and characterization of heavy metal resistant Pseudomonas spp. and their plant growth promoting activities. Adv Appl Sci Res 4:269–272

    CAS  Google Scholar 

  • Singh S, Tripathi DK, Singh S et al (2017) Toxicity of aluminium on various levels of plant cells and organism: A review. Environ Exp Bot 137:177–193

    CAS  Google Scholar 

  • Sinha P, Shukla A, Sharma Y (2015) Amelioration of heavy metal toxicity in cauliflower by application of salicylic acid. Commun Soil Sci Plant Anal 46:1309–1319

    CAS  Google Scholar 

  • Siqueira JO, Rocha WF, Oliveira E, Colozzi-Filho A (1990) The relationship between vesicular-arbuscular mycorrhiza and lime: Associated effects on the growth and nutrition of brachiaria grass (Brachiaria decumbens). Biol Fertil Soils 10:65–71

    Google Scholar 

  • Sita K, Kumar V (2020) Role of Gamma Amino Butyric Acid (GABA) against abiotic stress tolerance in legumes: a review. Plant Physiol Rep 25:654–663

    CAS  Google Scholar 

  • Sivaguru M, Horst WJ (1998) The distal part of the transition zone is the most aluminum-sensitive apical root zone of maize. Plant Physiol 116:155–163

    CAS  PubMed Central  Google Scholar 

  • Sivaguru M, Fujiwara T, Šamaj J et al (2000) Aluminum-induced 1→3-β-d-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminum toxicity in plants. Plant Physiol 124:991–1006

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sivaguru M, Ezaki B, He ZH et al (2003) Aluminum-induced gene expression and protein localizationn of a cell wall-associated receptor kinase in Arabidopsis. Plant Physiol 132:2256–2266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sivaguru M, Yamamoto Y, Rengel Z et al (2005) Early events responsible for aluminum toxicity symptoms in suspension-cultured tobacco cells. New Phytol 165:99–109

    CAS  PubMed  Google Scholar 

  • Sivaguru M, Liu J, Kochian LV (2013) Targeted expression of SbMATE in the root distal transition zone is responsible for sorghum aluminum resistance. Plant J 76:297–307

    CAS  PubMed  Google Scholar 

  • Sjogren CA, Larsen PB (2017) SUV2, which encodes an ATR-related cell cycle checkpoint and putative plant ATRIP, is required for aluminium-dependent root growth inhibition in Arabidopsis. Plant Cell Environ 40:1849–1860

    CAS  PubMed  Google Scholar 

  • Sjogren CA, Bolaris SC, Larsen PB (2015) Aluminum-dependent terminal differentiation of the Arabidopsis root tip is mediated through an ATR-, ALT2-, and SOG1-regulated transcriptional response. Plant Cell 27:2501–2515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith S, Read D (2008) Mycorrhiza symbiosis, 3rd edn. Academic Press, San Diego, p 800

    Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song H, Wang XX, Wang H, Taoa YH (2010) Exogenous caminobutyric acid alleviates oxidative damage caused by aluminium and proton stresses on barley seedlings. J Sci Food Agric 90:1410–1416

    CAS  PubMed  Google Scholar 

  • Song H, Xu X, Wang H, Tao Y (2011) Protein carbonylation in barley seedling roots caused by aluminum and proton toxicity is suppressed by salicylic acid. Russ J Plant Physiol 58:653–659

    CAS  Google Scholar 

  • Soto-Cerda BJ, Inostroza-Blancheteau C, Mathias M et al (2015) Marker-assisted breeding for TaALMT1, a major gene conferring aluminium tolerance to wheat. Biol Plant 59:83–91

    CAS  Google Scholar 

  • Spormann S, Soares C, Teixeira J, Fidalgo F (2021) Polyamines as key regulatory players in plants under metal stress—A way for an enhanced tolerance. Ann Appl Biol 178:209–226

    CAS  Google Scholar 

  • Stass A, Kotur Z, Horst WJ (2007) Effect of boron on the expression of aluminum toxicity in Phaseolus vulgaris. Physiol Plant 131:283–290

    CAS  PubMed  Google Scholar 

  • Stass A, Smit I, Eticha D et al (2008) The significance of organic-anion exudation for the aluminum resistance of primary triticale derived from wheat and rye parents differing in aluminum resistance. J Plant Nutr Soil Sci 171:634–642

    CAS  Google Scholar 

  • Sun QB, Shen RF, Zhao XQ et al (2008) Phosphorus enhances Al resistance in Al-resistant Lespedeza bicolor but not in Al-sensitive L. cuneata under relatively high Al stress. Ann Bot 102:795–804

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun C, Lu L, Yu Y et al (2016) Decreasing methylation of pectin caused by nitric oxide leads to higher aluminium binding in cell walls and greater aluminium sensitivity of wheat roots. J Exp Bot 67:979–989

    CAS  PubMed  Google Scholar 

  • Sun C, Liu L, Lu L et al (2018) Nitric oxide acts downstream of hydrogen peroxide in regulating aluminum-induced antioxidant defense that enhances aluminum resistance in wheat seedlings. Environ Exp Bot 145:95–103

    CAS  Google Scholar 

  • Sun L, Zhang M, Liu X et al (2020) Aluminium is essential for root growth and development of tea plants (Camellia sinensis). J Integr Plant Biol 62:984–997

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sungurtseva IU, YeV L, Muratova AY, Pleshakova EV (2015) Bioaccumulation of cadmium (II) by bacillus sp. 14 rhizobacteria. Izv Saratov Univ 15:74–77

    Google Scholar 

  • Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203

    CAS  PubMed  Google Scholar 

  • Surapu V, Ediga A, Meriga B (2014) Salicylic acid alleviates aluminum toxicity in tomato seedlings (Lycopersicum esculentum Mill.) through activation of antioxidant defense system and proline biosynthesis. Adv Biosci Biotechnol 5:777–789

    Google Scholar 

  • Tabuchi A, Matsumoto H (2001) Changes in cell-wall properties of wheat (Triticum aestivum) roots during aluminum-induced growth inhibition. Physiol Plant 112:353–358

    CAS  PubMed  Google Scholar 

  • Takanashi K, Shitan N, Yazaki K (2014) The multidrug and toxic compound extrusion (MATE) family in plants. Plant Biotechnol 31:417–430

    CAS  Google Scholar 

  • Tan K, Keltjens WG (1990) Interaction between aluminium and phosphorus in sorghum plants. Plant Soil 124:15–23

    CAS  Google Scholar 

  • Tjellström H, Hellgren LI, Wieslander A, Sandelius AS (2010) Lipid asymmetry in plant plasma membranes: phosphate deficiency-induced phospholipid replacement is restricted to the cytosolic leaflet. FASEB J 24:1128–1138

    PubMed  Google Scholar 

  • Tolra R, Martos S, Hajiboland R, Poschenrieder C (2020) Aluminium alters mineral composition and polyphenol metabolism in leaves of tea plants (Camellia sinensis). J Inorg Biochem 204:110956

    CAS  PubMed  Google Scholar 

  • Tovkach A, Ryan PR, Richardson AE et al (2013) Transposon-mediated alteration of TaMATE1B expression in wheat confers constitutive citrate efflux from root apices. Plant Physiol 161:880–892

    CAS  PubMed  Google Scholar 

  • Tsutsui T, Yamaji N, Ma JF (2011) Identification of a cis-acting element of ART1, a C2H2-type zinc-finger transcription factor for aluminum tolerance in rice. Plant Physiol 156:925–931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ulloa-Inostroza EM, Alberdi M, Meriño-Gergichevich C, Reyes-Díaz M (2017) Low doses of exogenous methyl jasmonate applied simultaneously with toxic aluminum improves the antioxidant performance of Vaccinium corymbosum. Plant Soil 412:81–96

    CAS  Google Scholar 

  • Ulloa-Inostroza EM, Alberdi M, Ivanov AG, Reyes-Díaz M (2019) Protective effect of methyl jasmonate on photosynthetic performance and its association with antioxidants in contrasting aluminum-resistant blueberry cultivars exposed to aluminum. J Seed Sci Plant Nutr 19:203–216

    CAS  Google Scholar 

  • Vasconcellos RCC, Mendes FF, Oliveira AC et al (2021) ZmMATE1 improves grain yield and yield stability in maize cultivated on acid soil. Crop Sci 61:3497–3506

    CAS  Google Scholar 

  • Vazquez M, Poschenrieder C, Corrales I, Barceló J (1999) Changes in apoplastic aluminum during the initial growth response to aluminum by roots of tolerant maize variety. Plant Physiol 119:435444

    Google Scholar 

  • Von Uexküll HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15

    Google Scholar 

  • Walker C, Cuenca G, Sánchez F (1998) Scutellospora spinosissima sp. nov., a newly described glomalean fungus from acidic, low nutrient plant communities in Venezuela. Ann Bot 82:721–725

    Google Scholar 

  • Wan Q, Mi Y, Yang Y et al (2018) Aluminum-enhanced proton release associated with plasma membrane H+-adenosine triphosphatase activity and excess cation uptake in tea (Camellia sinensis) plant roots. Pedosphere 28:804–813

    CAS  Google Scholar 

  • Wang BL, Shen JB, Zhang WH et al (2007a) Citrate exudation from white lupin induced by phosphorus deficiency differs from that induced by aluminum. New Phytol 176:581–589

    CAS  PubMed  Google Scholar 

  • Wang J, Raman H, Zhou M et al (2007b) High-resolution map** of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 115:265–276

    CAS  PubMed  Google Scholar 

  • Wang H, Huang J, Liang W et al (2013a) Involvement of putrescine and nitric oxide in aluminum tolerance by modulating citrate secretion from roots of red kidney bean. Plant Soil 366:479–490

    CAS  Google Scholar 

  • Wang H, Liang W, Huang J (2013b) Putrescine mediates aluminum tolerance in red kidney bean by modulating aluminum-induced oxidative stress. Crop Sci 53:2120–2128

    CAS  Google Scholar 

  • Wang Y, Li R, Li D et al (2017) NIP1; 2 is a plasma membrane-localized transporter mediating aluminum uptake, translocation, and tolerance in Arabidopsis. Proc Natl Acad Sci USA 114:5047–5052

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Yu W, Cao Y et al (2020) An exclusion mechanism is epistatic to an internal detoxification mechanism in aluminum resistance in Arabidopsis. BMC Plant Biol 20:122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Dong Y, Zhu L et al (2021) The role of γ-aminobutyric acid in aluminum stress tolerance in a woody plant, Liriodendron chinense × tulipifera. Hortic Res 8:80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021–1058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei P, Demulder M, David P et al (2021a) Arabidopsis casein kinase 2 triggers stem cell exhaustion under Al toxicity and phosphate deficiency through activating the DNA damage response pathway. Plant Cell 33:1361–1380

    PubMed  Google Scholar 

  • Wei Y, Han R, **e Y et al (2021b) Recent advances in understanding mechanisms of plant tolerance and response to aluminum toxicity. Sustainability 13:1782

    CAS  Google Scholar 

  • Wen XP, Ban Y, Inoue H et al (2009) Aluminum tolerance in a spermidine synthase-overexpressing transgenic European pear is correlated with the enhanced level of spermidine via alleviating oxidative status. Environ Exp Bot 66:471–478

    CAS  Google Scholar 

  • Wherrett T, Ryan PR, Delhaize E, Shabala S (2005) Effect of aluminium on membrane potential and ion fluxes at the apices of wheat roots. Funct Plant Biol 32:199–208

    CAS  PubMed  Google Scholar 

  • Wu L, Kobayashi Y, Wasaki J, Koyama H (2018a) Organic acid excretion from roots: a plant mechanism for enhancing phosphorus acquisition, enhancing aluminum tolerance, and recruiting beneficial rhizobacteria. Soil Sci Plant Nutr 64:697–704

    CAS  Google Scholar 

  • Wu L, Yu J, Shen Q et al (2018b) Identification of microRNAs in response to aluminum stress in the roots of Tibetan wild barley and cultivated barley. BMC Genom 19:560

    Google Scholar 

  • Wu L, Guo Y, Cai S et al (2020) The zinc finger transcription factor ATF1 regulates aluminum tolerance in barley. J Exp Bot 71:6512–6523

    CAS  PubMed  Google Scholar 

  • **a J, Yamaji N, Kasai T, Ma JF (2010) Plasma membrane-localized transporter for aluminum in rice. Proc Natl Acad Sci USA 107:18381–18385

    CAS  PubMed  PubMed Central  Google Scholar 

  • **a J, Yamaji N, Ma JF (2013) A plasma membrane-localized small peptide is involved in rice aluminum tolerance. Plant J 76:345–355

    CAS  PubMed  Google Scholar 

  • Xu JM, Lou HQ, ** JF et al (2018) A half-type ABC transporter FeSTAR1 regulates Al resistance possibly via UDP-glucose-based hemicellulose metabolism and Al binding. Plant Soil 432:303–314

    CAS  Google Scholar 

  • Xu J, Zhu J, Liu J et al (2021) SIZ1 negatively regulates aluminum resistance by mediating the STOP1-ALMT1 pathway in Arabidopsis. J Integr Plant Biol 63:1147–1160

    CAS  PubMed  Google Scholar 

  • Xue YJ, Ling T, Yang ZM (2008) Aluminum-induced cell wall peroxidase activity and lignin synthesis are differentially regulated by jasmonate and nitric oxide. J Agric Food Chem 56:9676–9684

    CAS  PubMed  Google Scholar 

  • Yamaji N, Huang CF, Nagao S et al (2009) A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. Plant Cell 21:3339–3349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Devi SR et al (2003) Oxidative stress triggered by aluminum in plant roots. In: Abe J (ed) Roots: The dynamic interface between plants and the earth. Springer, Dordrecht, pp 239–243

    Google Scholar 

  • Yang ZB, Horst WJ (2015) Aluminum-induced inhibition of root growth: Roles of cell wall assembly, structure, and function. In: Panda SK, Baluška F (eds) Aluminum stress adaptation in plants, vol 24. Springer International Publishing, Switzerland, pp 253–274

    Google Scholar 

  • Yang ZM, Wang J, Wang SH, Xu LL (2003) Salicylic acid-induced aluminum tolerance by modulation of citrate efflux from roots of Cassia tora L. Planta 217:168–174

    CAS  PubMed  Google Scholar 

  • Yang YH, Gu HJ, Fan WY, Abdullahi BA (2004) Effects of boron on aluminum toxicity on seedlings of two soybean cultivars. Water Air Soil Pollut 154:239–248

    CAS  Google Scholar 

  • Yang JL, You JF, Li YY et al (2007) Magnesium enhances aluminum-induced citrate secretion in rice bean roots (Vigna umbellata) by restoring plasma membrane H+-ATPase activity. Plant Cell Physiol 48:66–73

    CAS  PubMed  Google Scholar 

  • Yang JL, Li YY, Zhang YJ et al (2008) Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex. Plant Physiol 146:602–611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JL, Zhu XF, Peng YX et al (2011a) Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis. Plant Physiol 155:1885–1892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JL, Zhu XF, Zheng C et al (2011b) Genotypic differences in Al resistance and the role of cell-wall pectin in Al exclusion from the root apex in Fagopyrum tataricum. Ann Bot 107:371–378

    CAS  PubMed  Google Scholar 

  • Yang LT, Jiang HX, Tang N, Chen LS (2011c) Mechanisms of aluminum-tolerance in two species of citrus: Secretion of organic acid anions and immobilization of aluminum by phosphorus in roots. Plant Sci 180:521–530

    CAS  PubMed  Google Scholar 

  • Yang XY, Zeng ZH, Yan JY et al (2013) Association of specific pectin methylesterases with Al-induced root elongation inhibition in rice. Physiol Plant 148:502–511

    CAS  PubMed  Google Scholar 

  • Yang ZB, Geng X, He C et al (2014) TAA1- regulated local auxin biosynthesis in the root-apex transition zone mediates the aluminum-induced inhibition of root growth in Arabidopsis. Plant Cell 26:2889–2904

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, He C, Ma Y et al (2017) Jasmonic acid enhances Al-induced root growth inhibition. Plant Physiol 173:1420–1433

    CAS  PubMed  Google Scholar 

  • Yang Y, Dai CY, Guo L et al (2018) Salicylic acid reduces the accumulation of aluminum in Panax notoginseng root cell wall pectin via the no signaling pathway. Plant Soil 430:171–184

    CAS  Google Scholar 

  • Yokosho K, Yamaji N, Fujii-Kashino M, Ma JF (2016) Retrotransposon-mediated aluminum tolerance through enhanced expression of the citrate transporter OsFRDL4. Plant Physiol 172:2327–2336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshiyama KO, Sakaguchi K, Kimura S (2013) DNA damage response in plants: Conserved and variable response compared to animals. Biology 2:1338–1356

    PubMed  PubMed Central  Google Scholar 

  • Yoshiyama KO, Kaminoyama K, Sakamoto T, Kimura S (2017) Increased phosphorylation of Ser-Gln sites on SUPPRESSOR OF GAMMA RESPONSE1 strengthens the DNA damage response in Arabidopsis thaliana. Plant Cell 29:3255–3268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu M, Shen R, **ao H et al (2009) Boron alleviates aluminum toxicity in pea (Pisum sativum). Plant Soil 314:87–98

    CAS  Google Scholar 

  • Yu Y, ** CW, Sun CL et al (2015) Elevation of arginine decarboxylase-dependent putrescine production enhances aluminum tolerance by decreasing aluminum retention in root cell walls of wheat. J Hazard Mater 299:280–288

    CAS  PubMed  Google Scholar 

  • Yu Y, ** C, Sun C et al (2016) Inhibition of ethylene production by putrescine alleviates aluminium induced root inhibition in wheat plants. Sci Rep 6:18888

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Zhou W, Zhou K et al (2018) Polyamines modulate aluminum-induced oxidative stress differently by inducing or reducing H2O2 production in wheat. Chemosphere 212:645–653

    CAS  PubMed  Google Scholar 

  • Yu Y, Zhou W, Liang X et al (2019a) Increased bound putrescine accumulation contributes to the maintenance of antioxidant enzymes and higher aluminum tolerance in wheat. Environ Pollut 252:941–949

    CAS  PubMed  Google Scholar 

  • Yu Z, Jia D, Liu T (2019b) Polyamine oxidases play various roles in plant development and abiotic stress tolerance. Plants 8:184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yusuf M, Fariduddin Q, Khan TA, Hayat S (2017) Epibrassinolide reverses the stress generated by combination of excess aluminum and salt in two wheat cultivars through altered proline metabolism and antioxidants. S Afr J Bot 112:391–398

    CAS  Google Scholar 

  • Zafar-ul-Hye M, Danish S, Abbas M et al (2019) ACC deaminase producing PGPR Bacillus amyloliquefaciens and Agrobacterium fabrum along with Biochar improve wheat productivity under drought stress. Agronomy 9:343

    CAS  Google Scholar 

  • Zeng QY, Yang CY, Ma QB et al (2012) Identification of wild soybean miRNAs and their target genes responsive to aluminum stress. BMC Plant Biol 12:182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang WH, Rengel Z (1999) Aluminium induces an increase in cytoplasmic calcium in intact wheat root apical cells. Funct Plant Biol 26:401–409

    CAS  Google Scholar 

  • Zhang G, Taylor GJ (1990) Kinetics of aluminum uptake in Triticum aestivum L.: Identity of the linear phase of aluminum uptake by excised roots of aluminum-tolerant and aluminum-sensitive cultivars. Plant Physiol 94:577–584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Wang H, Wang X, Bi Y (2011) Nitric oxide enhances aluminum tolerance by affecting cell wall polysaccharides in rice roots. Plant Cell Rep 30:1701–1711

    CAS  PubMed  Google Scholar 

  • Zhang Y, Guo J, Chen M et al (2018) The cell cycle checkpoint regulator ATR is required for internal aluminum toxicity-mediated root growth inhibition in Arabidopsis. Front Plant Sci 9:118

    PubMed  PubMed Central  Google Scholar 

  • Zhang F, Yan X, Han X et al (2019a) A defective vacuolar proton pump enhances aluminum tolerance by reducing vacuole sequestration of organic acids. Plant Physiol 181:743–761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Li D, Wei J et al (2019b) Melatonin alleviates aluminum-induced root growth inhibition by interfering with nitric oxide production in Arabidopsis. Environ Exp Bot 161:157–165

    CAS  Google Scholar 

  • Zhang Y, Zhang J, Guo J et al (2019c) F-box protein RAE1 regulates the stability of the aluminum-resistance transcription factor STOP1 in Arabidopsis. Proc Natl Acad Sci USA 116:319–327

    CAS  PubMed  Google Scholar 

  • Zhao XQ, Shen RF (2018) Aluminum-nitrogen interactions in the soil-plant system. Front Plant Sci 9:807

    PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Ma JF, Sato K, Takeda K (2003) Differential Al resistance and citrate secretion in barley (Hordeum vulgare L.). Planta 217:794–800

    CAS  PubMed  Google Scholar 

  • Zhao Z, Gao X, Ke Y et al (2019) A unique aluminum resistance mechanism conferred by aluminum and salicylic-acid-activated root efflux of benzoxazinoids in maize. Plant Soil 437:273–289

    CAS  Google Scholar 

  • Zhao Y, Song X, Zhong DB et al (2020) γ-Aminobutyric acid (GABA) regulates lipid production and cadmium uptake by Monoraphidium sp. QLY-1 under cadmium stress. Bioresour Technol 297:122500

    CAS  PubMed  Google Scholar 

  • Zheng SJ, Ma JF, Matsumoto H (1998) Continuous secretion of organic acids is related to aluminium resistance during relatively long-term exposure to aluminium stress. Physiol Plant 103:209–214

    CAS  Google Scholar 

  • Zheng SJ, Yang JL, He YF et al (2005) Immobilization of aluminum with phosphorus in roots is associated with high aluminum resistance in buckwheat. Plant Physiol 138:297–303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Xu XY, Chen LQ et al (2012) Nitric oxide exacerbates Al-induced inhibition of root elongation in rice bean by affecting cell wall and plasma membrane properties. Phytochemistry 76:46–51

    CAS  PubMed  Google Scholar 

  • Zhou G, Pereira JF, Delhaize E et al (2014) Enhancing the aluminium tolerance of barley by expressing the citrate transporter genes SbMATE and FRD3. J Exp Bot 65:2381–2390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YG, He YQ, Smith SE, Smith FA (2002) Buckwheat (Fagopyrum esculentum Moench) has high capacity to take up phosphorus (P) from a calcium (Ca)-bound source. Plant Soil 239:1–8

    CAS  Google Scholar 

  • Zhu XF, Lei GJ, Jiang T et al (2012a) Cell wall polysaccharides are involved in P-deficiency-induced Cd exclusion in Arabidopsis thaliana. Planta 236:989–997

    CAS  PubMed  Google Scholar 

  • Zhu XF, Shi YZ, Lei GJ et al (2012b) XTH31, encoding an in vitro XEH/XET-active enzyme, regulates aluminum sensitivity by modulating in vivo XET action, cell wall xyloglucan content, and aluminum binding capacity in Arabidopsis. Plant Cell 24:4731–4747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu XF, Sun Y, Zhang BC et al (2014) TRICHOME BIREFRINGENCE-LIKE27 affects aluminum sensitivity by modulating the O-acetylation of xyloglucan and aluminum-binding capacity in Arabidopsis. Plant Physiol 166:181–189

    PubMed  PubMed Central  Google Scholar 

  • Zhu YF, Guo J, Zhang Y, Huang CF (2021) The THO/TREX complex component RAE2/TEX1 is involved in the regulation of aluminum resistance and low phosphate response in Arabidopsis. Front Plant Sci 2021:1415

    Google Scholar 

Download references

Acknowledgements

We thank Peter Ryan (CSIRO Agriculture and Food, Australia), Eric van der Graafffor (Koppert Cress B.V., The Netherlands), Miguel Piñeros (Cornell University, USA), Ruth Welti (Kansas State University, USA), and Idupulapati M. Rao (CIAT, Colombia) for valuable comments and discussions. Roghieh Hajiboland was supported by University of Tabriz, International and Academic Cooperation Directorate, in the framework of TabrizU-300 program. Oksana Lastochkina acknowledges the support from Federal Scientific Research Program of the State Academies of Sciences of Russian Federation (Grant No. AAAA-A21-121011990120-7). Gustavo Habermann acknowledges Brazilian National Council for Scientific Development (CNPq) for a research fellowship granted (307431/2020-7) and the São Paulo Research Foundation (FAPESP) for financial support (2017/26144-0). Jorge F Pereira acknowledges the financial support from the Brazilian Agricultural Research Corporation (EMBRAPA) and the Minas Gerais Research Funding Foundation (FAPEMIG).

Funding

No funds were required for writing this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors have written, critically revised, and discussed all aspects of the manuscript.

Corresponding authors

Correspondence to Roghieh Hajiboland or Jorge F. Pereira.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Mukesh Jain.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajiboland, R., Panda, C.K., Lastochkina, O. et al. Aluminum Toxicity in Plants: Present and Future. J Plant Growth Regul 42, 3967–3999 (2023). https://doi.org/10.1007/s00344-022-10866-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10866-0

Keywords

Navigation