Log in

The Physiological Relationship Between Abscisic Acid and Gibberellin During Seed Germination of Trichocline catharinensis (Asteraceae) Is Associated with Polyamine and Antioxidant Enzymes

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

An improved understanding of seed quality and germination control can contribute effectively to the use and conservation of neglected native species with ecological and economic value, such as Trichocline catharinensis, an endemic Asteraceae species from southern Brazil. We investigated the effects of applying gibberellin (GA3), abscisic acid (ABA) and their biosynthesis inhibitors, paclobutrazol (PAC) and fluridone (FLU), respectively, on T. catharinensis seed germination, and on polyamine (PA) content and antioxidant enzyme activities in germinating seeds. FLU and GA3 increased seed germination speed compared to treatment with H2O only. ABA inhibited both germination speed index and percentage, while PAC severely inhibited seed germination. The stimulatory effect of GA3 and FLU was associated with increased contents of putrescine (PUT) and spermidine (SPD) relative to spermine (SPM). As a result, high ratio (PUT + SPD/SPM) as well as superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) enzyme activities were observed when seed germination occurs. In contrast, in low or no seed germination treatment (ABA and PAC), low ratio (PUT + SPD/SPM) was observed, while the antioxidant enzymes, mainly SOD activity, tended to increase. Application of PAs at 200 μM stimulated germination through improving the speed and uniformity, and this effect was associated with antioxidant enzyme activity. Our results suggest a relationship between PA and the antioxidant system with the physiological mechanism of seed germination. These results improve the physiological knowledge of seed germination control in Asteraceae and contribute to the biological groundwork for future studies on the use and conservation of native species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ADC:

Arginine decarboxylase

APX:

Ascorbate peroxidase

CAT:

Catalase

DAI:

Days after imbibition

DAO:

Diamine oxidases

FLU:

Fluridone

GA:

Gibberellin

GR:

Glutathione reductase

HCl:

Hydrochloric acid

HPLC:

High-performance liquid chromatography

H2O:

Water

IAA:

Indole-3-acetic acid

GSI:

Germination speed index

ODC:

Ornithine decarboxylase

NBT:

Nitro tetrazolium Blue chloride

PAs:

Polyamines

PAC:

Paclobutrazol

PAO:

Polyamine oxidases

PGRs:

Plant growth regulators

POD:

Peroxidase

PUT:

Putrescine

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

SPD:

Spermidine

SPM:

Spermine

References

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249. https://doi.org/10.1007/s00425-010-1130-0

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    CAS  PubMed  Google Scholar 

  • Bailly C, Kranner I (2011) Analyses of reactive oxygen species and antioxidants in relation to seed longevity and germination. Methods Mol Biol 773:343–367. https://doi.org/10.1007/978-1-61779-231-1_20

    Article  CAS  PubMed  Google Scholar 

  • Bailly C, Leymarie J, Lehner A, Rousseau S, Côme D, Corbineau F (2004) Catalase activity and expression in develo** sunflower seeds as related to drying. J Exp Bot 55:475–483. https://doi.org/10.1093/jxb/erh050

    Article  CAS  PubMed  Google Scholar 

  • Bailly C, El-Maarouf-Bouteau H, Corbineau F (2008) From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. C. R. Biologies 331:806–814. https://doi.org/10.1016/j.crvi.2008.07.022

    Article  CAS  PubMed  Google Scholar 

  • Barba-Espin G, Diaz-Vivancos P, Clemente-Moreno M, Albacete A, Faize L, Faize M, Pérez-Alfocea F, Hernández J (2010) Interaction between hydrogen peroxide and plant hormones during germination and the early growth of pea seedlings. Plant Cell Environ 33:981–994. https://doi.org/10.1111/j.1365-3040.2010.02120.x

    Article  CAS  PubMed  Google Scholar 

  • Bewley DJ, Bradford K, Hilhorst H (2013) Seeds: physiology of development, germination and dormancy. Springer, London

    Google Scholar 

  • Bombo AB, Oliveira TSD, Appezzato-Da-Glória B, Novembre ADDLC (2015) Seed germination of Brazilian Aldama species (Asteraceae). J. Seed Sci. 37:185–191. https://doi.org/10.1590/2317-1545v37n3146138

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Brown RF, Mayer DG (1988) Representing cumulative germination. 1. A critical analysis of single-value germination indices. Ann Bot 61:117–125. https://doi.org/10.1093/oxfordjournals.aob.a087534

    Article  Google Scholar 

  • Bueno M, Matilla A (1992) Abscisic acid increases the content of free polyamines and delays mitotic activity induced by spermine in isolated embryonic axes of chick-pea seeds. Physiol Plant 85:531–536

    CAS  Google Scholar 

  • Bull JW, Maron M (2016) How humans drive speciation as well as extinction. Proc R Soc Lond B 283:1–10. https://doi.org/10.1098/rspb.2016.0600

    Article  Google Scholar 

  • Cabrera AL, Klein RM (1973) Compostas tribo Mutisieae. In: Cabrera AL, Klein RM (eds) Flora ilustrada catarinense. Herbário Barbosa Rodrigues, Itajaí, p 94

    Google Scholar 

  • Cao D, Hu J, Zhu S, Hu W, Knapp A (2010) Relationship between changes in endogenous polyamines and seed quality during development of sh2 sweet corn (Zea mays L.) seed. Sci Hortic 123:301–307. https://doi.org/10.1016/j.scienta.2009.10.006

    Article  CAS  Google Scholar 

  • Chen QL, Guo Y, Jiang Y, Tu P (2016) Mechanism of fluridone-induced seed germination of Cistanche tubulosa. Pak J Bot 48:971–976

    CAS  Google Scholar 

  • Coradin L, Siminski A, Reis A (2011) Espécies Nativas da Flora Brasileira de Valor Econômico Atual ou Potencial. Ministério do Meio Ambiente, Brasília

    Google Scholar 

  • Cury G, Novembre ADDLC, Glória BAD (2010) Seed germination of Chresta sphaerocephala DC. and Lessingianthus bardanoides (Less.) H. Rob. (asteraceae) from Cerrado. Braz Arch Biol Technol 53:1299–1308. https://doi.org/10.1590/S1516-89132010000600006

    Article  Google Scholar 

  • Davide AC, Silva CSJ, Silva EAAD, Pinto LVA, Faria JMR (2008) Morpho-anatomical, biochemical and physiological studies in seeds of Eremanthus erythropappus (DC.) MacLeish during germination. Rev. Bras. Sementes 30:171–176. https://doi.org/10.1590/S0101-31222008000200021

    Article  Google Scholar 

  • Diaz-Vivancos P, Barba-Espín G, Hernández JA (2013) Elucidating hormonal/ROS networks during seed germination: insights and perspectives. Plant Cell Rep 32:1491–1502. https://doi.org/10.1007/s00299-013-1473-7

    Article  CAS  PubMed  Google Scholar 

  • El-Maarouf-Bouteau H, Bailly C (2008) Oxidative signaling in seed germination and dormancy. Plant Signal Behav 3:175–182. https://doi.org/10.4161/psb.3.3.5539

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Maarouf-Bouteau H, Sajjad Y, Bazin J, Langlade N, Cristescu SM, Balzergue S, Baudouin E, Bailly C (2015) Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination. Plant Cell Environ 38:364–374

    CAS  PubMed  Google Scholar 

  • Ferreira AG, Cassol B, Rosa SGTD, Silveira TSD, Stival AL, Silva AA (2001) Germination of seeds of Asteraceae natives of Rio Grande do Sul. Brazil Acta Bot Bras 15:231–242. https://doi.org/10.1590/S0102-33062001000200009

    Article  Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523. https://doi.org/10.1111/j.1469-8137.2006.01787.x

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875. https://doi.org/10.1105/tpc.105.033589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funk VA, Susanna A, Stuessy TF, Robinson H (2009) Classification of compositae. In: Funk VA, Susanna A, Stuessy T, Bayer R (eds) Systematics, evolution and biogeography of the Compositae. International Association for Plant Taxonomy, Michigan, pp 171–189

    Google Scholar 

  • Galston AW, Sawhney RK (1990) Polyamines in plant physiology. Plant Physiol 94:406–410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I Occurrence in higher plants. Plant Physiol 59:309–314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goggin DE, Steadman KJ, Emery RJN, Farrow SC, Benech-Arnold RL, Powles SB (2009) ABA inhibits germination but not dormancy release in mature imbibed seeds of Lolium rigidum Gaud. J Exp Bot 60:3387–3396. https://doi.org/10.1093/jxb/erp175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes V, Fernandes GW (2002) Germination of Baccharis dracunculifolia DC (Asteraceae) achene. Acta Bot Bras 16:421–427. https://doi.org/10.1590/S0102-33062002000400005

    Article  Google Scholar 

  • Gomes MP, Garcia QS (2013) Reactive oxygen species and seed germination. Biologia 68:351–357. https://doi.org/10.2478/s11756-013-0161-y

    Article  CAS  Google Scholar 

  • Gordin CRB, Marques RF, Masetto TE, Scalon SDPQ (2012) Germination, seed biometrics and seedling morphology of Guizotia abyssinica Cass. Rev Bras Sementes 34:619–627. https://doi.org/10.1590/S0101-31222012000400013

    Article  Google Scholar 

  • Grappin P, Bouinot D, Sotta B, Miginiac E, Jullien M (2000) Control of seed dormancy in Nicotiana plumbaginifolia: post-imbibition abscisic acid synthesis imposes dormancy maintenance. Planta 210:279–285

    CAS  PubMed  Google Scholar 

  • Gupta K, Sengupta A, Chakraborty M, Gupta B (2016) Hydrogen peroxide and polyamines act as double edged swords in plant abiotic stress responses. Front Plant Sci 7:1343. https://doi.org/10.3389/fpls.2016.01343

    Article  PubMed  PubMed Central  Google Scholar 

  • Hedden P, Graebe JE (1985) Inhibition of gibberellin biosynthesis by paclobutrazol in cell-free homogenates of Cucurbita maxima endosperm and Malus pumila embryos. J Plant Growth Regul 4:111

    CAS  Google Scholar 

  • Holdsworth MJ, Bentsink L, Soppe WJJ (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179:33–54

    CAS  PubMed  Google Scholar 

  • Hu X, Zhang A, Zhang J, Jiang M (2006) Abscisic acid is a key inducer of hydrogen peroxide production in leaves of maize plants exposed to water stress. Plant Cell Physiol 47:1484–1495

    CAS  PubMed  Google Scholar 

  • Hu XW, Huang XH, Wang YR (2012) Hormonal and temperature regulation of seed dormancy and germination in Leymus chinensis. Plant Growth Regul 67:199–207

    CAS  Google Scholar 

  • Huang Y, Lin C, He F, Li Z, Guan Y, Hu Q, Hu J (2017) Exogenous spermidine improves seed germination of sweet corn via involvement in phytohormone interactions, H2O2 and relevant gene expression. BMC Plant Biol 17:1–16

    PubMed  PubMed Central  Google Scholar 

  • Huarte HR, Benech-Arnold RL (2010) Hormonal nature of seed responses to fluctuating temperatures in Cynara cardunculus (L.). Seed Sci Res 20:39–45

    CAS  Google Scholar 

  • Igarashi K, Kashiwagi K (2000) Polyamines: mysterious modulators of cellular functions. Biochem Biophys Res Commun 271:559–564

    CAS  PubMed  Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11:100–105

    Google Scholar 

  • Jiang M, Zhang J (2003) Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defence in leaves of maize seedlings. Plant Cell Environ 26:929–939

    CAS  PubMed  Google Scholar 

  • Jiménez-Bremont JF, Marina M, Guerrero-González Mde L, Rossi FR, Sánchez-Rangel D, Rodríguez-Kessler M, Ruiz OA, Gárriz A (2014) Physiological and molecular implications of plant polyamine metabolism during biotic interactions. Front Plant Sci 5:95. https://doi.org/10.3389/fpls.2014.00095

    Article  PubMed  PubMed Central  Google Scholar 

  • Job C, Rajjou L, Lovigny Y, Belghazi M, Job D (2005) Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol 138:790–802

    CAS  PubMed  PubMed Central  Google Scholar 

  • Justo CF, Alvarenga AAD, Nery FC, Delu Filho N (2007) Chemical composition, imbibition curve and temperature effect on seed germination of Eugenia pyriformis Camb. (Myrtaceae). Revista Brasileira Biociências 5:510–512

    Google Scholar 

  • Kaur-Sawhney R, Tiburcio AF, Altabella T, Galston AW (2003) Polyamines in plants: an overview. J Cell Mol Biol 2:1–12

    Google Scholar 

  • Kim ST, Kang SY, Wang Y, Kim SG, Hwang DH, Kang KY (2008) Analysis of embryonic proteome modulation by GA and ABA from germinating rice seeds. Proteomics 8:3577–3587

    CAS  PubMed  Google Scholar 

  • Koshiba T (1993) Cytosolic ascorbate peroxidase in seedlings and leaves of maize (Zea mays). Plant Cell Physiol 34:713–721. https://doi.org/10.1093/oxfordjournals.pcp.a078474

    Article  CAS  Google Scholar 

  • Krasuska U, Gniazdowska A (2012) Nitric oxide and hydrogen cyanide as regulating factors of enzymatic antioxidant system in germinating apple embryos. Acta Physiol Plant 34:683–692. https://doi.org/10.1007/s11738-011-0868-8

    Article  CAS  Google Scholar 

  • Krasuska U, Ciacka K, Bogatek R, Gniazdowska A (2014) Polyamines and nitric oxide link in regulation of dormancy removal and germination of apple (Malus domestica Borkh.) Embryos. J Plant Growth Regul 33:590–601. https://doi.org/10.1007/s00344-013-9408-7

    Article  CAS  Google Scholar 

  • Krasuska U, Ciacka K, Gniazdowska A (2017) Nitric oxide-polyamines cross-talk during dormancy release and germination of apple embryos. Nitric Oxide 68:38–50

    CAS  PubMed  Google Scholar 

  • Kucera B, Cohn MA, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15:281–307

    CAS  Google Scholar 

  • Kusano T, Suzuki H (2015) Polyamines: a universal molecular nexus for growth, survival, and specialized metabolism. Springer, New York

    Google Scholar 

  • Kusumoto D, Chae SH, Mukaida K, Yoneyama K, Yoneyama K, Joel DM, Takeuchi Y (2006) Effects of fluridone and norflurazon on conditioning and germination of Striga asiatica seeds. Plant Growth Regul 48:73–78

    CAS  Google Scholar 

  • Kuznetsov VV, Radyukina N, Shevyakova N (2006) Polyamines and stress: biological role, metabolism, and regulation. Russ J Plant Physiol 53:583

    CAS  Google Scholar 

  • Leubner-Metzger G, Knight C, Linkies A, Graeber K (2010) The evolution of seeds. New Phytol 186:817–831

    PubMed  Google Scholar 

  • Leymarie J et al (2011) Role of reactive oxygen species in the regulation of Arabidopsis seed dormancy. Plant Cell Physiol 53:96–106

    PubMed  Google Scholar 

  • Li Z et al (2015) Polyamine regulates tolerance to water stress in leaves of white clover associated with antioxidant defense and dehydrin genes via involvement in calcium messenger system and hydrogen peroxide signaling. Front Physiol 6:280. https://doi.org/10.3389/fphys.2015.00280

    Article  PubMed  PubMed Central  Google Scholar 

  • Li S, ** H, Zhang Q (2016) The Effect of Exogenous Spermidine Concentration on Polyamine Metabolism and Salt Tolerance in Zoysiagrass (Zoysia japonica Steud) Subjected to Short-Term Salinity Stress. Front Plant Sci. https://doi.org/10.3389/fpls.2016.01221

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Hou X (2018) Antagonistic regulation of ABA and GA in metabolism and signaling pathways. Front Plant Sci 9:251. https://doi.org/10.3389/fpls.2018.00251

    Article  PubMed  PubMed Central  Google Scholar 

  • Maguire JD (1962) Speed of germination—aid in selection and evaluation for seedling emergence and vigor. Crop Sci 2:176–177

    Google Scholar 

  • Mattoo AK, Handa AK (2008) Higher polyamines restore and enhance metabolic memory in ripening fruit. Plant Sci 174:386–393

    CAS  Google Scholar 

  • Miransari M, Smith D (2014) Plant hormones and seed germination. Environ Exp Bot 99:110–121

    CAS  Google Scholar 

  • Mirza JI, Rehman A (1998) A spermine-resistant mutant of Arabidopsis thaliana displays precocious germination. Acta Physiol Plant 20:235–240

    CAS  Google Scholar 

  • Moschou PN, Paschalidis KA, Roubelakis-Angelakis KA (2008) Plant polyamine catabolism: the state of the art. Plant Signal Behav 3:1061–1066

    PubMed  PubMed Central  Google Scholar 

  • Niedzwiedz-Siegien I, Bogatek-Leszczynska R, Côme D, Corbineau F (2004) Effects of drying rate on dehydration sensitivity of excised wheat seedling shoots as related to sucrose metabolism and antioxidant enzyme activities. Plant Sci 167:879–888. https://doi.org/10.1016/j.plantsci.2004.05.042

    Article  CAS  Google Scholar 

  • Nieuwland J, Stamm P, Wen B, Randall RS, Murray JA, Bassel GW (2016) Re-induction of the cell cycle in the Arabidopsis post-embryonic root meristem is ABA-insensitive, GA-dependent and repressed by KRP6. Sci Rep 6:23586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palavan N, Galston AW (1982) Polyamine biosynthesis and titer during various developmental stages of Phaseolus vulgaris. Physiol Plant 55:438–444

    CAS  Google Scholar 

  • Pasini E, Ritter MR (2012) O gênero Trichocline Cass. (Asteraceae, Mutisieae) no Rio Grande do Sul, Brasil. Revista Brasileira Biociências 10:490–506

    Google Scholar 

  • Peixoto PHP, Cambraia J, Sant’Anna R, Mosquim PR, Moreira MA (1999) Aluminum effects on lipid peroxidation and on the activities of enzymes of oxidative metabolism in sorghum. Rev Bras Fisiol Veg 11:137–143

    CAS  Google Scholar 

  • Peng J, Harberd NP (2002) The role of GA-mediated signalling in the control of seed germination. Curr Opin Plant Biol 5:376–381

    CAS  PubMed  Google Scholar 

  • Piskurewicz U, Lopez-Molina L (2009) The GA-signaling repressor RGL3 represses testa rupture in response to changes in GA and ABA levels. Plant Signal Behav. 4:63–65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L (2008) The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell 20:2729–2745

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rademacher W (2000) Growth Retardants: effects on Gibberellin. Annu Rev Plant Biol 51:501–531

    CAS  Google Scholar 

  • Radhakrishnan R, Lee I-J (2013) Spermine promotes acclimation to osmotic stress by modifying antioxidant, abscisic acid, and jasmonic acid signals in soybean. J Plant Growth Regul 32:22–30

    CAS  Google Scholar 

  • Ranal MA, Santana DGd (2006) How and why to measure the germination process? Braz J Bot 29:1–11

    Google Scholar 

  • Saha J, Brauer EK, Sengupta A, Popescu SC, Gupta K, Gupta B (2015) Polyamines as redox homeostasis regulators during salt stress in plants. Front Environ Sci 3:21. https://doi.org/10.3389/fenvs.2015.00021

    Article  Google Scholar 

  • Sánchez-Rangel D, Chávez-Martínez AI, Rodríguez-Hernández AA, Maruri-López I, Urano K, Shinozaki K, Jiménez-Bremont JF (2016) Simultaneous silencing of two arginine decarboxylase genes alters development in Arabidopsis. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00300

    Article  PubMed  PubMed Central  Google Scholar 

  • Shiozaki S, Ogata T, Horiuchi S, Zhuo X (1998) Involvement of polyamines in gibberellin-induced development of seedless grape berries. Plant Growth Regul 25:187–193. https://doi.org/10.1023/A:1006043116190

    Article  CAS  Google Scholar 

  • Silveira V, Balbuena TS, Santa-Catarina C, Floh EIS, Guerra MP, Handro W (2004) Biochemical changes during seed development in Pinus taeda L. Plant Growth Regul 44:147–156. https://doi.org/10.1023/B:GROW.0000049410.63154.ed

    Article  CAS  Google Scholar 

  • Skubacz A, Daszkowska-Golec A (2017) Seed dormancy: the complex process regulated by abscisic acid, gibberellins, and other phytohormones that makes seed germination work. IntechOpen, London

    Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in Biological Research, 3rd edn. W. H. Freeman and Company, New York

    Google Scholar 

  • Steiner N, Santa-Catarina C, Silveira V, Floh EI, Guerra MP (2007) Polyamine effects on growth and endogenous hormones levels in Araucaria angustifolia embryogenic cultures. Plant Cell Tissue Organ Cult 89:55–62. https://doi.org/10.1007/s11240-007-9216-5

    Article  CAS  Google Scholar 

  • Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Molassiotis A, Job D (2009) Proteomics reveals the overlap** roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J 60:795–804

    CAS  PubMed  Google Scholar 

  • Tassoni A, van Buuren M, Franceschetti M, Fornalè S, Bagni N (2000) Polyamine content and metabolism in Arabidopsis thaliana and effect of spermidine on plant development. Plant Physiol Biochem 38:383–393

    CAS  Google Scholar 

  • Team RC (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/

  • Tiburcio A, Besford R, Capell T, Borrell A, Testillano P, Risueno M (1994) Mechanisms of polyamine action during senescence responses induced by osmotic stress. J Exp Bot 45:1789–1800

    CAS  Google Scholar 

  • Urano K, Hobo T, Shinozaki K (2005) Arabidopsis ADC genes involved in polyamine biosynthesis are essential for seed development. FEBS Lett 579:1557–1564. https://doi.org/10.1016/j.febslet.2005.01.048

    Article  CAS  PubMed  Google Scholar 

  • Vieira B, Bicalho E, Munné-Bosch S, Garcia Q (2017) Abscisic acid regulates seed germination of Vellozia species in response to temperature. Plant Biol (Stuttg) 19:211–216. https://doi.org/10.1111/plb.12515

    Article  CAS  Google Scholar 

  • Wang L, Hua D, He J, Duan Y, Chen Z, Hong X, Gong Z (2011) Auxin Response Factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis. PLoS Genet 7:1–14

    Google Scholar 

  • Wojtyla Ł, Lechowska K, Kubala S, Garnczarska M (2016) Different modes of hydrogen peroxide action during seed germination. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00066

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang L, Hong X, Wen XX, Liao YC (2016) Effect of polyamine on seed germination of wheat under drought stress is related to changes in hormones and carbohydrates. J Integr Agric 15:1–17. https://doi.org/10.1016/S2095-3119(16)61366-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Plant Developmental Physiology and Genetics Laboratory of the Federal University of Santa Catarina, Brazil. The authors also thank the Laboratory of Morphogenesis and Plant Biochemistry of the Federal University of Santa Catarina, Brazil. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)-Finance Code 001.

Funding

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil). Grant Number of Neusa Steiner (311156/2017-7 457940/2014-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Steiner.

Ethics declarations

Conflict of interest

The authors declare that no conflict exists among the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lando, A.P., Viana, W.G., da Silva, R.A. et al. The Physiological Relationship Between Abscisic Acid and Gibberellin During Seed Germination of Trichocline catharinensis (Asteraceae) Is Associated with Polyamine and Antioxidant Enzymes. J Plant Growth Regul 39, 395–410 (2020). https://doi.org/10.1007/s00344-019-09990-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-019-09990-1

Keywords

Navigation