Log in

Iron Oxide Nanoparticles as Nano-adsorbents: A Possible Way to Reduce Arsenic Phytotoxicity in Indian Mustard Plant (Brassica juncea L.)

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Application of nanoparticles (NPs) is very effective in reducing metal toxicity. The present study was designed to determine the effectiveness of iron oxide nanoparticles (Fe3O4 NP) in reducing the toxicity of arsenic in Indian mustard (Brassica juncea var. Pusa Jagannath) plant. Fourteen-day-old mustard plants were subjected to 150 µM As(III), Fe3O4 NPs (500 mg L−1 Fe3O4), 500 mg L−1 FeSO4 or As(Ш) + Fe3O4 NPs (150 µM + 500 mg L−1) stress for a period of 96 h. Significant toxicity was observed in seed germination indicators, and root–shoot length under arsenic (As) stress, but application of Fe3O4 NPs along with As improved the overall growth of plant. Results demonstrated increased photosynthetic pigment and protein content under Fe3O4 NP augmentation as compared to As-alone treatment. Antioxidative enzymes such as SOD, CAT, APX and stress-related parameters (cysteine and proline) showed varied results under different treatments. However, decreased stress-related parameters might be due to restricted entry of As inside the plant in the presence of Fe3O4 NP, and hence detoxification machinery is not required. The ameliorating effect of Fe3O4 NPs in combination with As was confirmed by reduced MDA and H2O2 content. Further, the addition of Fe3O4 NPs along with As altered sulphur-related gene transcripts. Overall, this study suggests the possible involvement of Fe3O4 NPs as nano-adsorbents in reducing As toxicity in the plant through its size variation and increase/decrease of various study parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad MA, Gupta M (2013) Exposure of Brassica juncea (L.) to arsenic species in hydroponic medium: comparative analysis in accumulation and biochemical and transcriptional alterations. Environ Sci Pollut Res 20:8141–8150

    Article  CAS  Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    Article  CAS  Google Scholar 

  • Alidoust D, Isoda A (2013) Effect of γFe2O3 nanoparticles on photosynthetic characteristic of soybean (Glycine max (L.) Merr.): foliar spray versus soil amendment. Acta Physiol Plant 35(12):3365–3375

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in chloroplasts. Phenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Burke DJ, Pietrasiak N, Situ SF, Abenojar EC, Porche M, Kraj P, Samia A (2015) Iron oxide and titanium dioxide nanoparticle effects on plant performance and root associated microbes. Int J Mol Sci 16(10):23630–23650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaturvedi I (2006) Effects of arsenic concentrations and forms on growth and arsenic uptake and accumulation by Indian mustard (Brassica juncea L.) genotypes. J Cen Eur Agric 7(1):31–40

    Google Scholar 

  • Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22(11):585–594

    Article  CAS  Google Scholar 

  • Cheng W, Xu J, Wang Y, Wu F, Xu X, Li J (2015) Dispersion–precipitation synthesis of nanosized magnetic iron oxide for efficient removal of arsenite in water. J Colloid Interface Sci 445:93–101

    Article  CAS  PubMed  Google Scholar 

  • Demir V, Ates M, Arslan Z, Camas M, Celik F, Bogatu C, Can ŞS (2015) Influence of alpha and gamma-iron oxide nanoparticles on marine microalgae species. Bull Environ Contam Toxicol 95(6):752–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhoble RM, Lunge S, Bhole AG, Rayalu S (2011) Magnetic binary oxide particles (MBOP): a promising adsorbent for removal of As(III) in water. Water Res 45(16):4769–4781

    Article  CAS  PubMed  Google Scholar 

  • Ekmekçi Y, Tanyolaç D, Ayhan B (2009) A crop tolerating oxidative stress induced by excess lead: maize. Acta Physiol Plant 31(2):319–330

    Article  Google Scholar 

  • Gaitonde MK (1967) A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J 104:627–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil-Diaz M, González A, Alonso J, Lobo MC (2016) Evaluation of the stability of a nanoremediation strategy using barley plants. J Environ Manage 165:150–158

    Article  CAS  PubMed  Google Scholar 

  • Gregenheimer P (1990) Preparation of extracts from plants. Method Enzymol 182:174–193

    Article  Google Scholar 

  • Gupta S, Gupta M (2015) Alleviation of selenium toxicity in Brassica juncea L. : salicylic acid-mediated modulation in toxicity indicators, stress modulators, and sulfur-related gene transcripts. Protoplasma 253(6): 1515–1528

    Article  PubMed  Google Scholar 

  • Habuda-Stanić M, Nujić M (2015) Arsenic removal by nanoparticles: a review. Environ Sci Pollut Res 22(11):8094–8123

    Article  Google Scholar 

  • Hazeem LJ, Waheed FA, Rashdan S, Bououdina M, Brunet L, Slomianny C, Boukherroub R, Elmeselmani WA (2015) Effect of magnetic iron oxide (Fe3O4) nanoparticles on the growth and photosynthetic pigment content of Picochlorum sp. Environ Sci Pollut Res 22:11728–11739

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast I, Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 25:189–198

    Article  Google Scholar 

  • Hong X, Wang Z, Cai W, Lu F, Zhang J, Yang Y, Ma N, Liu Y (2005) Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide. Chem Mater 17(6):1548–1552

    Article  CAS  Google Scholar 

  • Hu X, Zhou Q (2013) Health and ecosystem risks of graphene. Chem Rev 113(5):3815–3835

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Wang D, Wang J, Wang J (2012) Bioaccumulation of Fe2O3 (magnetic) nanoparticles in Ceriodaphnia dubia. Environ Pollut 162:216–222

    Article  CAS  PubMed  Google Scholar 

  • Hu R, Shao D, Wang X (2014) Graphene oxide/polypyrrole composites for highly selective enrichment of U (VI) from aqueous solutions. Polym Chem 5(21):6207–6215

    Article  CAS  Google Scholar 

  • Hu X, Ding Z, Zimmerman AR, Wang S, Gao B (2015) Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Res 68:206–216

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Guo H, Li J, Gan Q, Wang Y, **ng B (2017) Comparative impacts of iron oxide nanoparticles and ferric ions on the growth of Citrus maxima. Environ Pollut 221:199–208

    Article  CAS  PubMed  Google Scholar 

  • Hunt ST, Nimmanwudipong T, Román-Leshkov Y (2014) Engineering non-sintered, metal-terminated tungsten carbide nanoparticles for catalysis. Angew Chem Int Ed 53(20):5131–5136

    CAS  Google Scholar 

  • Ji Y, Zhou Y, Ma C, Feng Y, Hao Y, Rui Y, Wu W, Gui X, Han Y, Wang Y, **ng B (2016) Jointed toxicity of TiO2 NPs and Cd to rice seedlings: NPs alleviated Cd toxicity and Cd promoted NPs uptake. Plant Physiol Biochem 110:82–93

    Article  PubMed  Google Scholar 

  • Kim YH, Khan AL, Kim DH, Lee SY, Kim KM, Waqas M, Jung HY, Shin JH, Kim JG, Lee IJ (2014) Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Biol 14(1):1

    Article  Google Scholar 

  • Kirk JTO, Allen RL (1965) Dependence of chloroplast pigment synthesis on protein synthesis: effect of actidione. Biochem Biophys Res Commun 21(6):523–530

    Article  CAS  PubMed  Google Scholar 

  • Konate A, He X, Zhang Z, Ma Y, Zhang P, Alugongo GM, Rui Y (2017) Magnetic (Fe3O4) nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling. Sustainability 9(5):790

    Article  Google Scholar 

  • Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochem 47(4):651–658

    Article  CAS  Google Scholar 

  • Labrou NE, Papageorgiou AC, Pavli O, Flemetakis E (2015) Plant GSTome: structure and functional role in xenome network and plant stress response. Curr Opin Biotechnol 32:186–194

    Article  CAS  PubMed  Google Scholar 

  • Lata S, Samadder SR (2016) Removal of arsenic from water using nano adsorbents and challenges: a review. J Environ Manage 166:387–406

    Article  CAS  PubMed  Google Scholar 

  • Li Y (2008) Effect of salt stress on seed germination and seedling growth of three salinity plants. Pak J Biol Sci 11(9):1268–1272

    Article  CAS  PubMed  Google Scholar 

  • Li J, Chang PR, Huang J, Wang Y, Yuan H, Ren H (2013) Physiological effects of magnetic iron oxide nanoparticles towards watermelon. J Nanosci Nanotechnol 13(8):5561–5567

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Cai H, Mei C, Wang M (2015) Effects of nano-silicon and common silicon on lead uptake and translocation in two rice cultivars. Front Environ Sci Eng 9(5):905–911

    Article  CAS  Google Scholar 

  • Liu R, Zhang H, Lal R (2016) Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients? Water Air Soil Pollut 227(1):42

    Article  Google Scholar 

  • López-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2010) X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58(6):3689–3693

    Article  PubMed  PubMed Central  Google Scholar 

  • Lunge S, Singh S, Sinha A (2014) Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. J Magn Magn Mater 356:21–31

    Article  CAS  Google Scholar 

  • Ma H, Williams PL, Diamond SA (2013a) Ecotoxicity of manufactured ZnO nanoparticles: a review. Environ Pollut 172:76–85

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Gurung A, Deng Y (2013b) Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species. Sci Total Environ 443:844–849

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Fernández D, Barroso D, Komárek M (2016) Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure. Environ Sci Pollut Res 23:1732–1741

    Article  Google Scholar 

  • Maughan S, Foyer CH (2006) Engineering and genetic approaches to modulating the glutathione network in plants. Physiol Plant 126(3):382–397

    Article  CAS  Google Scholar 

  • Mishra S, Singh HB (2015) Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture. Appl Microbiol Biotechnol 99(3):1097–1107

    Article  CAS  PubMed  Google Scholar 

  • Musanite C, White JC (2012) Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environ Toxicol 27(9):510–517

    Article  Google Scholar 

  • Nair PMG, Chung IM (2014) Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignification, and molecular level changes. Environ Sci Pollut Res 21(22):12709–12722

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Pal J, Kanti Deb M (2012) Microwave synthesis of polymer coated silver nanoparticles by glucose as reducing agent. Indian J Chem A 51(6):821

    Google Scholar 

  • Pandey C, Gupta M (2015) Selenium and auxin mitigates arsenic stress in rice (Oryza sativa L.) by combining the role of stress indicators, modulators and genotoxicity assay. J Hazard Mater 287:384–391

    Article  CAS  PubMed  Google Scholar 

  • Pandey C, Khan E, Mishra A, Sardar M, Gupta M (2014) Silver nanoparticles and its effect on seed germination and physiology in Brassica juncea L. (Indian mustard) plant. Adv Sci Lett 20(7–8):1673–1676

    Article  Google Scholar 

  • Pandey C, Khan E, Panthri M, Tripathi RD, Gupta M (2016) Impact of silicon on Indian mustard (Brassica juncea L.) root traits by regulating growth parameters, cellular antioxidants and stress modulators under arsenic stress. Plant Physiol Biochem 104:216–225

    Article  CAS  PubMed  Google Scholar 

  • Pearson M, Jones-Hughes T, Whear R, Cooper C, Peters J, Evans EH, Depledge M (2011) Are interventions to reduce the impact of arsenic contamination of groundwater on human health in develo** countries effective?: a systematic review protocol. Environ Evid 1(1):1

    Article  Google Scholar 

  • Prasad KS, Ramanathan AL, Paul J, Subramanian V, Prasad R (2013) Biosorption of arsenite (As3+) and arsenate (As5+) from aqueous solution by Arthrobacter sp. biomass. Environ Technol 34(19):2701–2708

    Article  CAS  PubMed  Google Scholar 

  • Rawat M, Nayan R, Negi B, Zaidi MGH, Arora S (2017) Physio-biochemical basis of iron-sulfide nanoparticle induced growth and seed yield enhancement in B. juncea. Plant Physiol Biochem 118:274–284

    Article  CAS  PubMed  Google Scholar 

  • Ren HX, Liu L, Liu C, He SY, Huang J, Li JL, Gu N (2011) Physiological investigation of magnetic iron oxide nanoparticles towards chinese mung bean. J Biomed Nanotechnol 7(5):677–684

    Article  CAS  PubMed  Google Scholar 

  • Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, Zhao Q, Fan X, Zhang Z, Hou T, Zhu S (2016) Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci 7:815

    Article  PubMed  PubMed Central  Google Scholar 

  • Saito K (2004) Sulfur assimilatory metabolism. The long and smelling road. Plant Physiol 136(1):2443–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2(1):1

    Article  Google Scholar 

  • Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanopart Res 7(4–5):331–342

    Article  CAS  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145(1):83–96

    Article  CAS  PubMed  Google Scholar 

  • Sors TG, Ellis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosyn Res 86(3):373–389

    Article  CAS  PubMed  Google Scholar 

  • Stietiya MH, Wang JJ (2014) Zinc and cadmium adsorption to aluminum oxide nanoparticles affected by naturally occurring ligands. J Environ Qual 43(2):498–506

    Article  PubMed  Google Scholar 

  • Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184

    Article  CAS  PubMed  Google Scholar 

  • Thul ST, Sarangi BK, Panday RA (2013) Nanotechnology in agro-ecosystem: implications on plant productivity and its soil environment. Expert Opin Environ Biol 2:1

    Article  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165

    Article  CAS  PubMed  Google Scholar 

  • Tripathi P, Tripathi RD, Singh RP, Dwivedi S, Goutam D, Shri M, Trivedi PK, Chakrabarty D (2013) Silicon mediates arsenic tolerance in rice (Oryza sativa L.) through lowering of arsenic uptake and improved antioxidant defence system. Ecol Eng 52:96–103

    Article  Google Scholar 

  • Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015) Silicon nanoparticles (SiNp) alleviate chromium(VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem 96:189–198

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, Prasad SM, Singh PK, Dubey NK, Pandey AC, Chauhan DK (2016) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177

    Article  PubMed  Google Scholar 

  • Venkatachalam P, Priyanka N, Manikandan K, Ganeshbabu I, Indiraarulselvi P, Geetha N, Muralikrishna K, Bhattacharya RC, Tiwari M, Sharma N, Sahi SV (2016) Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol Biochem 110:118–127

    Article  PubMed  Google Scholar 

  • Wang H, Kou X, Pei Z, **ao JQ, Shan X, **ng B (2011) Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicol 5:30–42

    Article  Google Scholar 

  • Waychunas GA, Kim CS, Banfield JF (2005) Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. J Nanopart Res 7(4–5):409–433

    Article  CAS  Google Scholar 

  • Wirtz M, Droux M (2005) Synthesis of the sulfur amino acids: cysteine and methionine. Photosynth Res 86:345–362

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Hong F, You W, Liu C, Gao F, Wu C, Yang P (2006) Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110(2):179–190

    Article  CAS  PubMed  Google Scholar 

  • Zargar SM, Kurata R, Inaba S, Oikawa A, Fukui R, Ogata Y, Agrawal GK, Rakwal R, Fukao Y (2015) Quantitative proteomics of Arabidopsis shoot microsomal proteins reveals a cross-talk between excess zinc and iron deficiency. Proteomics 15(7):1196–1201

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Plant Biol 61:535–559

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AP (DBT/JRF/14/AL/250) and EK (DBT/JRF/14/AL/207) thank the Department of Biotechnology (DBT), Govt. of India for fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meetu Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praveen, A., Khan, E., Ngiimei D, S. et al. Iron Oxide Nanoparticles as Nano-adsorbents: A Possible Way to Reduce Arsenic Phytotoxicity in Indian Mustard Plant (Brassica juncea L.). J Plant Growth Regul 37, 612–624 (2018). https://doi.org/10.1007/s00344-017-9760-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-017-9760-0

Keywords

Navigation