Log in

Cloning, Localization, and Expression Analysis of a New Tonoplast Monosaccharide Transporter from Vitis vinifera L

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Tonoplast sugar transporters are important for sugar partitioning, immobilization, and accumulation during fruit development and ripening. Here we report the cloning, localization, and functional analysis of one of these transporters in grape berries (Vitis vinifera L.). This clone, named VvTMT1, encodes a 742-aa protein with a calculated molecular mass of 80.2 kDa. Predicted membrane topology and phylogenetic analysis suggest that VvTMT1 belongs to the major facilitator superfamily of membrane carriers. Semiquantitative RT-PCR suggests that VvTMT1 is a sink-specific transporter, whose expression decreases with berry development. Heterologous expression of VvTMT1 in yeast can partially restore growth of the hxt-null strain in glucose and other monosaccharide media, indicating that VvTMT1 is a functional monosaccharide transporter. Induction of VvTMT1-GFP fusion protein expression in transgenic yeast revealed its tonoplast localization. The subcellular localization of VvTMT1 in plants was shown by immunogold labeling of grape berry mesocarp cells and VvTMT1-GFP transient expression in tobacco epidermis cells. Based on the above analyses of VvTMT1, this is the first report of a functional tonoplast-localized monosaccharide transporter in grapevine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agasse A, Vignault C, Kappel C, Conde C, Gerós H, Delrot S (2009) Sugar transport and sugar sensing in grape. In: Roubelakis-Angelakis KA (ed) Grapevine molecular physiology and biotechnology, 2nd edn. Springer, New York, pp 105–139

    Chapter  Google Scholar 

  • Ageorges A, Issaly R, Picaud S, Delrot S, Romieu C (2000) Characterization of an active sucrose transporter gene expressed during the ripening of grape berry (Vitis vinifera L.). Plant Physiol Biochem 38:177–185

    Article  CAS  Google Scholar 

  • Antony E, Taybi T, Courbot M, Mugford ST, Smith JAC, Borland AM (2008) Cloning, localization and expression analysis of vacuolar sugar transporters in the CAM plant Ananas comosus (pineapple). J Exp Bot 59:1895–1908

    Article  PubMed  CAS  Google Scholar 

  • Asano T, Katagiri H, Takata K, Lin JL, Ishihara H, Inukai K, Tsukuda K, Kikuchi M, Hirano H, Yazaki Y, Oka Y (1991) The role of N-glycosylation of GLUT1 for glucose transport activity. J Biol Chem 266:24632–24636

    PubMed  CAS  Google Scholar 

  • Baldwin B, Henderson P (1989) Homologies between sugar transporters from eukaryotes and prokaryotes. Annu Rev Physiol 51:459–471

    Article  PubMed  CAS  Google Scholar 

  • Batoko H, Zheng H-Q, Hawes C, Moore I (2000) A Rab1 GTPase is required for transport between the endoplasmic reticulum and Golgi apparatus and for normal Golgi movement in plants. Plant Cell 12:2201–2218

    Article  PubMed  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  • Büttner M, Sauer N (2000) Monosaccharide transporters in plants: structure, function and physiology. Biochim Biophys Acta 1465:263–274

    Article  PubMed  Google Scholar 

  • Carter C, Pan S, Zouhar J, Avila EL, Girke T, Raikhel NV (2004) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unpredicted proteins. Plant Cell 16:3285–3303

    Article  PubMed  CAS  Google Scholar 

  • Chiou TJ, Bush DR (1996) Molecular cloning, immunochemical localization to the vacuole, and expression in transgenic yeast and tobacco of a putative sugar transporter from sugar beet. Plant Physiol 110:511–520

    Article  PubMed  CAS  Google Scholar 

  • Conde C, Agasse A, Silva P, Lemoine R, Delrot S, Tavares R, Gerós H (2007) OeMST2 encodes a monosaccharide transporter expressed throughout olive fruit maturation. Plant Cell Physiol 48:1299–1308

    Article  PubMed  CAS  Google Scholar 

  • Davies C, Robinson SP (1996) Sugar accumulation in grape berries—cloning of two putative vacuolar invertase cDNAs and their expression in grapevine tissues. Plant Physiol 111:275–283

    Article  PubMed  CAS  Google Scholar 

  • Davies C, Wolf T, Robinson SP (1999) Three putative sucrose transporters are differentially expressed in grapevine tissues. Plant Sci 147:93–100

    Article  CAS  Google Scholar 

  • Endler A, Meyer S, Schelbert S, Schneider T, Weschke W, Peters SW, Keller F, Baginsky S, Martinoia E, Schmidt UG (2006) Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach. Plant Physiol 141:196–207

    Article  PubMed  CAS  Google Scholar 

  • Fillion L, Ageorges A, Picaud S, Coutos-Thevenot P, Lemoine R, Romieu C, Delrot S (1999) Cloning and expression of a hexose transporter gene expressed during the ripening of grape berry. Plant Physiol 120:1083–1094

    Article  PubMed  CAS  Google Scholar 

  • Frommer WB, Ninnemann O (1995) Heterologous expression of genes in bacteria, fungal, animal, and plant cells. Ann Rev Plant Physiol Plant Mol Biol 46:419–444

    Article  CAS  Google Scholar 

  • Gal S, Raikhel NV (1994) A carboxy-terminal plant vacuolar targeting signal is not recognized by yeast. Plant J 6:235–240

    Article  PubMed  CAS  Google Scholar 

  • Gietz D, Jean AS, Woods RA, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425

    Article  PubMed  CAS  Google Scholar 

  • Gottwald JR, Krysan PJ, Young JC, Evert RF, Sussman MR (2000) Genetic evidence for the in planta role of phloem-specific plasma membrane sucrose transporters. Proc Natl Acad Sci U S A 97:13979–13984

    Article  PubMed  CAS  Google Scholar 

  • Griffith JK, Baker ME, Rouch DA, Page MGP, Skurray RA, Paulsen IT, Chater KF, Baldwin SA, Henderson PJF (1992) Membrane transport proteins: implications of sequence comparisons. Curr Opin Cell Biol 4:684–695

    Article  PubMed  CAS  Google Scholar 

  • Hayes MA, Davies C, Dry IB (2007) Isolation, functional characterization, and expression analysis of grapevine (Vitis vinifera L.) hexose transporters: differential roles in sink and source tissues. J Exp Bot 58:1985–1997

    Article  PubMed  CAS  Google Scholar 

  • Henderson PJ, Baldwin SA, Cairns MT, Charalambous BM, Dent HC, Gunn F, Liang WJ, Lucas VA, Martin GE, McDonald TP, McKeown BJ, Muiry JAR, Petro KR, Rooberts PE, Shatwell KP, Smith G, Tate CG (1992) Sugar-cation symport systems in bacteria. Int Rev Cytol 137A:149–208

    Article  CAS  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pè ME, Valle G, Morgante M, Caboche M, Adam-Blondon A-F, Weissenbach J, Quétier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–468

    Article  PubMed  CAS  Google Scholar 

  • Jaquinod M, Villiers F, Kieffer-Jaquinod S, Hugouvieux V, Bruley C, Garin J, Bourguignon J (2007) A proteomic dissection of Arabidopsis thaliana vacuoles isolated from cell culture. Mol Cell Proteomics 6:394–412

    PubMed  CAS  Google Scholar 

  • Koch KE (1996) Carbohydrate modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47:509–540

    Article  PubMed  CAS  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a Hidden Markov Model: application to complete genomes. J Mol Biol 305:567–580

    Article  PubMed  CAS  Google Scholar 

  • Lalonde S, Boles E, Hellmann H, Barker L, Patrick JW, Frommer WB, Ward JM (1999) The dual function of sugar carriers: transport and sugar sensing. Plant Cell 11:707–726

    Article  PubMed  CAS  Google Scholar 

  • Lemoine (2000) Sucrose transporters in plants: update on function and structure. Biochim Biophys Acta 1465:246–262

    Article  PubMed  CAS  Google Scholar 

  • Maiden M, Davis EO, Baldwin S, Moore D, Henderson P (1987) Mammalian and bacterial sugar porters are homologous. Nature 325:641–643

    Article  PubMed  CAS  Google Scholar 

  • Manning K, Davies C, Bowen HC, White PJ (2001) Functional characterization of two ripening-related sucrose transporters from grape berries. Ann Bot 87:125–129

    Article  CAS  Google Scholar 

  • Marger MD, Saier MH (1993) A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci 18:13–20

    Article  PubMed  CAS  Google Scholar 

  • Reinders A, Sivitz AB, Starker CG (2008) Functional analysis of LjSUT4, a vacuolar sucrose transporter from Lotus japonicus. Plant Mol Biol 68:289–299

    Article  PubMed  CAS  Google Scholar 

  • Reisen D, Marty F, Leborgne-Castel N (2005) New insights into the tonoplast architecture of plant vacuoles and vacuolar dynamics during osmotic stress. BMC Plant Biol 5:13

    Article  PubMed  Google Scholar 

  • Rentsch D, Laloi M, Rouhara I, Scmelzer E, Delrot S, Frommer WB (1995) NTR1 encodes a high affinity oligopeptide transporter in Arabidopsis. FEBS Lett 370:264–268

    Article  PubMed  CAS  Google Scholar 

  • Riesmeier JW, Hirner B, Frommer WB (1993) Potato sucrose transporter expression in minor veins indicates a role in phloem loading. Plant Cell 5:1591–1598

    Article  PubMed  CAS  Google Scholar 

  • Robinson SP, Davies C (2000) Molecular biology of grape berry ripening. Aust J Grape Wine Res 6:175–188

    Article  CAS  Google Scholar 

  • Sambrook J, Fittsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sauer N (2007) Molecular physiology of higher plant sucrose transporters. FEBS Lett 581:2309–2317

    Article  PubMed  CAS  Google Scholar 

  • Schmidt UG, Endler A, Schelbert S, Brunner A, Schnell M, Neuhaus HE, Marty-Mazars D, Marty F, Baginsky S, Martinoia E (2007) Novel tonoplast transporters identified using a proteomic approach with vacuoles isolated from cauliflower buds. Plant Physiol 145:216–229

    Article  PubMed  CAS  Google Scholar 

  • Schneider S, Beyhl D, Hedrich R, Sauer N (2008) Functional and physiological characterization of Arabidopsis inositol transporter1, a novel tonoplast-localized transporter for myo-inositol. Plant Cell 20:1073–1087

    Article  PubMed  CAS  Google Scholar 

  • Shimaoka T, Ohnishi M, Sazuka T, Mitsuhashi N, Hara-Nishimura I, Shimazaki K, Maeshima M, Yokota A, Tomizawa K, Mimura T (2004) Isolation of intact vacuoles and proteomic analysis of tonoplast from suspension-cultured cells of Arabidopsis thaliana. Plant Cell Physiol 45:672–683

    Article  PubMed  CAS  Google Scholar 

  • Sivitz AB, Reinders A, Johnson ME, Krentz AD, Grof CPL, Perroux JM, Ward JM (2007) Arabidopsis Sucrose Transporter AtSUC9. High-affinity transport activity, intragenic control of expression, and early flowering mutant phenotype. Plant Physiol 143:188–198

    Article  PubMed  CAS  Google Scholar 

  • Stadler R, Truernit E, Gahrtz M, Sauer N (1999) The AtSUC1 sucrose carrier may represent the osmotic driving force for anther dehiscence and pollen tube growth in Arabidopsis. Plant J 19:269–278

    Article  PubMed  CAS  Google Scholar 

  • Szponarski W, Sommerer N, Boyer JC, Rossignol M, Gibart R (2004) Large-scale characterization of integral proteins from Arabidopsis vacuolar membrane by two-dimensional liquid chromatography. Proteomics 4:397–406

    Article  PubMed  CAS  Google Scholar 

  • Taylor CB (1997) Promoter fusion analysis: an insufficient measure of gene expression. Plant Cell 9:273–275

    Article  CAS  Google Scholar 

  • Terrier N, Glissant D, Grimplet J, Barrieu F, Abbal P, Couture C, Ageorges A, Atanassova R, Léon C, Renaudin JP, Dédaldechamp F, Romieu C, Delrot S, Hamdi S (2005) Isogene specific oligo arrays reveal multifaceted changes in gene expression during grape berry (Vitis vinifera L.) development. Planta 222:832–847

    Article  PubMed  CAS  Google Scholar 

  • Vignault C, Vachaud M, Cakir B, Glissant D, Dedaldechamp F, Buttner M, Atanassova R, Fleurat-Lessard P, Lemoine R, Delrot S (2005) VvHT1 encodes a monosaccharide transporter expressed in the conducting complex of the grape berry phloem. J Exp Bot 56:1409–1418

    Article  PubMed  CAS  Google Scholar 

  • Wieczorke R, Krampe S, Weierstall T, Freidel K, Hollenberg CP, Boles E (1999) Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 464:123–128

    Article  PubMed  CAS  Google Scholar 

  • Williams L, Lemoine R, Sauer N (2000) Sugar transporters in higher plants: a diversity of roles and complex regulation. Trends Plant Sci 5:283–290

    Article  PubMed  CAS  Google Scholar 

  • Wormit A, Trentmann O, Feifer I, Lohr C, Tjaden J, Meyer S, Schmidt U, Martinoia E, Neuhaus HE (2006) Molecular identification and physiological characterization of a novel monosaccharide transporter from Arabidopsis involved in vacuolar sugar transport. Plant Cell 18:3476–3490

    Article  PubMed  CAS  Google Scholar 

  • Zhang DP, Lu YM, Wang YZ, Duan CQ, Yan HY (2001) Acid invertase is predominantly localized to cell walls of both the practically symplasmically isolated element/companion cell complex and parenchyma cells in develo** apple fruits. Plant Cell Environ 24:691–702

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (30471212 and 30500347). We are grateful to Prof. Dr. Doris Rentsch (University of Bern, Switzerland) for the gift of the pDR195 vector, to Prof. Dr. Eckhard Boles (University of Frankfurt, Germany) for providing the S. cerevisiae strain EBY.VW4000, and to Dr. Camille Vainstein for language proof reading.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shangwu Chen or Huiqin Ma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 248 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, L., Wang, Z., Vainstein, A. et al. Cloning, Localization, and Expression Analysis of a New Tonoplast Monosaccharide Transporter from Vitis vinifera L. J Plant Growth Regul 30, 199–212 (2011). https://doi.org/10.1007/s00344-010-9185-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-010-9185-5

Keywords

Navigation