Log in

Exogenous Hydrogen Peroxide Changes Antioxidant Enzyme Activity and Protects Ultrastructure in Leaves of Two Cucumber Ecotypes Under Osmotic Stress

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Cucumber (Cucumis sativus L.) varieties cv. **chun no. 4 (a North China ecotype) and cv. Lvfeng no. 6 (a South China ecotype) were cultivated to explore the effects of osmotic stress on the ultrastructure of chloroplasts and mitochondria, as well as to assess the possible protective effect of exogenous hydrogen peroxide (H2O2). Under osmotic stress induced by 10% polyethylene glycol 6000, 84.3% of the chloroplasts in **chun no. 4 were abnormal, whereas 88.6% were abnormal in Lvfeng no. 6. Abnormal mitochondria occurred in these two strains at rates of 78.5 and 87.1%, respectively. The stress condition disintegrated the membranes of most chloroplasts and mitochondria in the leaf cells of both cucumber ecotypes, and it also increased the malondialdehyde (MDA) content. We subjected the two cultivars to a combined treatment with H2O2 and osmotic stress and made the following observations: (1) Abnormal chloroplasts occurred at rates of 25.7 and 28.6%, and abnormal mitochondria were observed at rates of 22.9 and 32.8%, respectively. (2) Most of the investigated membranes were well organized in leaves of **chun no. 4 and Lvfeng no. 6, and the levels of endogenous H2O2, superoxide anion, and MDA were lower. Osmotic stress and exogenous H2O2 both increased the activities of antioxidative enzymes such as manganese superoxide dismutase, glutathione peroxidase, catalase, guaiacol peroxidase, ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase, dehydroascorbate reductase, and the antioxidants ascorbate and reduced glutathione. The combined effect of osmotic stress and exogenous H2O2 resulted in the highest antioxidant activities in both cucumber ecotypes. We propose that exogenous H2O2 increases antioxidant activity in cucumber leaves and thereby decreases lipid peroxidation to some extent, thus protecting the ultrastructure of most chloroplasts and mitochondria under osmotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alscher RG, Donahue JL, Cramer CL (1997) Reactive oxygen species and antioxidant: relationship in green cells. Physiol Plant 100:224–233

    Article  CAS  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase—a hydrogen peroxide-scavenging enzyme in plants. Physiol Plant 85:235–241

    Article  CAS  Google Scholar 

  • Babitha MP, Prakash HS, Shetty HS (2002) Purification and partial characterization of manganese superoxide dismutase from downy mildew resistant pearl millet seedlings inoculated with Sclerospora graminicola. Plant Sci 163:917–924

    Article  CAS  Google Scholar 

  • Ben-Hayyim G, Faltin Z, Gepstein S, Camoin L, Strosberg AD, Eshdat Y (1993) Isolation and characterization of salt-associated protein in Citrus. Plant Sci 88:129–140

    Article  CAS  Google Scholar 

  • Bernt E, Bergmeyer HU (1974) Inorganic peroxides. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp 2246–2248

    Google Scholar 

  • Bowdith MI, Donaldson RP (1990) Ascorbate free-radical reduction by glyoxysomal membranes. Plant Physiol 94:531–537

    Article  Google Scholar 

  • Carpita N, Sabularse D, Monfezinos D, Delmer DP (1979) Determination of the pore size of cell walls of living plant cells. Science 205:1144–1147

    Article  CAS  PubMed  Google Scholar 

  • Chamnongpol S, Willekens H, Moeder W, Langebartels C, Sandermann H Jr, Van Montagu M, Inze D, Van Camp W (1998) Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proc Natl Acad Sci USA 95:5818–5823

    Article  CAS  PubMed  Google Scholar 

  • Chang CJ, Kao CH (1997) Paraquat toxicity is reduced by metal chelators in rice leaves. Physiol Plant 101:471–476

    Article  CAS  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • Chen GX, Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol 30:987–998

    CAS  Google Scholar 

  • Crowe JH, Carpenter JF, Crowe LM (1998) The role of vitrification in anhydrobiosis. Annu Rev Physiol 60:73–103

    Article  CAS  PubMed  Google Scholar 

  • De Azevedo Neto AD, Prisco JT, Enéas-Filho J, Medeiros JVR, Gomes-Filho E (2005) Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants. J Plant Physiol 162:1114–1122

    Article  PubMed  CAS  Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Diaz-Vivancos P, Rubio M, Mesonero V, Periago PM, Ros Barceló A, Martínez-Gómez P, Hernández JA (2006) The apoplastic antioxidant system in Prunus: response to long-term plum pox virus infection. J Exp Bot 57:3813–3824

    Article  CAS  PubMed  Google Scholar 

  • Djanaguiraman M, Devi DD, Shanker AK, Sheeba JA, Bangarusamy U (2005) Selenium—an antioxidative protectant in soybean during senescence. Plant Soil 272:77–86

    Article  CAS  Google Scholar 

  • Doulis AG, Debian N, Kingston-Smith AH, Foyer CH (1997) Differential localization of antioxidants in maize leaves. Plant Physiol 114:1031–1037

    CAS  PubMed  Google Scholar 

  • Elstner EF (1982) Oxygen activation and oxygen toxicity. Annu Rev Plant Physiol 33:73–96

    Article  CAS  Google Scholar 

  • Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammonium chloride: a simple assay for superoxide dismutase. Anal Biochem 70:616–620

    Article  CAS  PubMed  Google Scholar 

  • Fletcher RA, Gilley A, Sankhlam N, Davis TD (2000) Triazoles as plant growth regulators and stress protectants. Hort Rev 24:55–138

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2000) Oxygen processing in photosynthesis: regulation and signalling. New Phytol 146:359–388

    Article  CAS  Google Scholar 

  • Foyer CH, Lopez-Delzado H, Dat JF, Scott IM (1997) Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Fridovich I (1975) Superoxide dismutase. Annu Rev Biochem 44:147–159

    Article  CAS  PubMed  Google Scholar 

  • García-Valenzuela X, García-Moya E, Rascón-Cruz Q, Herrera-Estrella L, Aguado-Santacruz GA (2005) Chlorophyll accumulation is enhanced by osmotic stress in graminaceous chlorophyllic cells. J Plant Physiol 162:650–661

    Article  PubMed  CAS  Google Scholar 

  • Guri A (1983) Variation in glutathione and ascorbic acid content among selected cultivars of Phaseolus vulgaris prior to and after exposure to ozone. Can J Plant Sci 63:733–737

    Article  CAS  Google Scholar 

  • Helliot B, Swennen R, Poumay Y, Frison E, Lepoivre P, Panis B (2003) Ultrastructural changes associated with cryopreservation of banana (Musa spp.) highly proliferating meristems. Plant Cell Rep 21:690–698

    CAS  PubMed  Google Scholar 

  • Hernández JA, Corpas FJ, Gómez M, del Río LA, Sevilla F (1993) Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiol Plant 89:103–110

    Article  Google Scholar 

  • Hernández JA, Olmos E, Corpas FJ, Sevilla F, del Río LA (1995) Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci 105:151–167

    Article  Google Scholar 

  • Hernández JA, Escobar C, Creissen G, Mullineaux PM (2004) Role of hydrogen peroxide and the redox state of ascorbate in the induction of antioxidant enzymes in pea leaves under excess light stress. Funct Plant Biol 31:359–368

    Article  Google Scholar 

  • Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25:385–395

    CAS  Google Scholar 

  • Hwang SY, Lin HW, Chern RH, Lo HF, Li L (1999) Reduced susceptibility to water logging together with high-light stress is related to increases in superoxide dismutase and catalase activities in sweet potato. Plant Growth Regul 27:167–172

    Article  CAS  Google Scholar 

  • Jaleel CA, Gopi R, Manivannan P, Panneerselvam R (2007) Responses of antioxidant defense system of Catharanthus roseus (L.) G. Don. to paclobutrazol treatment under salinity. Acta Physiol Plant 29:205–209

    Article  CAS  Google Scholar 

  • Jiménez A, Hernández JA, de1 Río LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284

    PubMed  Google Scholar 

  • Kefeli VI (1981) Vitamins and some other representatives of non-hormonal plant growth regulator prikibiokhim. Microbiology 17:5–15

    CAS  Google Scholar 

  • Klein BP, Perry AK (1982) Ascorbic acid and vitamin A activity in selected vegetables from different geographical areas of the United States. J Food Sci 47:941–945

    Article  CAS  Google Scholar 

  • Kong L, Wang M, Bi D (2005) Selenium modulates the activities of antioxidant enzymes, osmotic homeostasis and promotes the growth of sorrel seedlings under salt stress. Plant Growth Regul 45:155–163

    Article  CAS  Google Scholar 

  • Kumar S, Singla-Pareek SL, Reddy MK, Sopory SK (2003) Glutathione: biosynthesis, homeostasis and its role in abiotic stresses. J Plant Biol 30:179–187

    Google Scholar 

  • Kusaka M, Ohta M, Fujimura T (2005) Contribution of inorganic components to osmotic adjustment and leaf folding for drought tolerance in pearl millet. Physiol Plant 125:474–489

    CAS  Google Scholar 

  • Lee DH, Lee CB (2000) Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Sci 159:75–85

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Chen Q, Liu Q, Zhang W, Ding R (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol 160:1157–1164

    Article  CAS  PubMed  Google Scholar 

  • Liu ZJ, Zhang XL, Bai JG, Suo BX, Xu PL, Wang L (2009) Exogenous paraquat changes antioxidant enzyme activities and lipid peroxidation in drought-stressed cucumber leaves. Sci Hortic 121:138–143

    Article  CAS  Google Scholar 

  • Ludlow MM, Muchow RC (1990) A critical evaluation of traits for improving crop yields in water-limited environments. Adv Agron 43:107–153

    Article  Google Scholar 

  • Luster DG, Donaldson RP (1987) Orientation of electron transport activities in the membrane of intact glyoxysomes isolated from castor bean endosperm. Plant Physiol 85:796–800

    Article  CAS  PubMed  Google Scholar 

  • Mäkelä P, Kärkkäinen J, Somersalo S (2000) Effect of glycinebetaine on chloroplast ultrastructure, chlorophyll and protein content and RuBPCO activities in tomato grown under drought or salinity. Biol Plant 43:471–475

    Article  Google Scholar 

  • Manivannan P, Jaleel CA, Kishorekumar A, Sankar B, Somasundaram R, Sridharan R, Panneerselvam R (2007) Propiconazole induced changes in antioxidant metabolism and drought stress amelioration in Vigna unguiculata (L.) Walp. Colloids Surf B Biointerfaces 57:69–74

    Article  CAS  PubMed  Google Scholar 

  • Mascher R, Nagy E, Lippmann B, Hörnlein S, Fischer S, Scheiding W, Neagoe A, Bergmann H (2005) Improvement of tolerance to paraquat and drought in barley (Hordeum vulgare L.) by exogenous 2-aminoethanol: effects on superoxide dismutase activity and chloroplast ultrastructure. Plant Sci 168:691–698

    Article  CAS  Google Scholar 

  • Mittler R, Zilinskas BA (1994) Regulation of pea cystsolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant J 5:397–405

    Article  CAS  PubMed  Google Scholar 

  • Miyagawa Y, Tamoi M, Shigeoka S (2000) Evaluation of the defense system in chloroplasts to photooxidative stress caused by paraquat using transgenic tobacco plants expressing catalase from Escherichia coli. Plant Cell Physiol 41:311–320

    CAS  PubMed  Google Scholar 

  • Molassiotis A, Sotiropoulos T, Tanou G, Diamantidis G, Therios I (2006) Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM9 (Malus domestica Borkh). Environ Exp Bot 56:54–62

    Article  CAS  Google Scholar 

  • Moran JF, Becana M, Iturbe-Ormaetxe I, Frechilla S, Klucas RV, Aparicio-Tejo P (1994) Drought induces oxidative stress in pea plants. Planta 194:346–352

    Article  CAS  Google Scholar 

  • Morgan JM (1984) Osmoregulation and water stress in higher plants. Annu Rev Plant Physiol 35:299–319

    Article  Google Scholar 

  • Mukherjee SP, Choudhuri MA (1983) Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58:166–170

    Article  CAS  Google Scholar 

  • Murillo-Amadaor B, López-Aguilar R, Kaya C, Larrinaga-Mayoral J, Flores-Hernandez A (2002) Comparative effects of NaCl and polyethylene glycol on germination, emergence and seedling growth of cowpea. J Agron Crop Sci 188:235–247

    Article  Google Scholar 

  • Murphy TM, Sung WW, Lin CH (2002) H2O2 treatment induces glutathione accumulation and chilling tolerance in mung bean. Funct Plant Biol 29:1081–1087

    Article  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002) Interactions between biosynthesis compartmentation and transport in the control of glutathione homeostasis and signaling. J Exp Bot 53:1283–1304

    Article  CAS  PubMed  Google Scholar 

  • Palomäki V, Holopainen JK, Holopainen T (1994) Effects of drought and waterlogging on ultrastructure of Scots pine and Norway spruce needles. Trees Struct Funct 9:98–105

    Google Scholar 

  • Pereira GJG, Molina SMG, Lea PJ, Azevedo RA (2002) Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea. Plant Soil 239:123–132

    Article  CAS  Google Scholar 

  • Raghu V, Platel K, Srinivasan K (2007) Comparison of ascorbic acid content of Emblica officinalis fruits determined by different analytical methods. J Food Compos Anal 20:529–533

    Article  CAS  Google Scholar 

  • Ramiro DA, Guerreiro-Filho O, Mazzafera P (2006) Phenol contents, oxidase activities, and the resistance of coffee to the leaf miner Leucoptera coffeella. J Chem Ecol 32:1977–1988

    Article  CAS  PubMed  Google Scholar 

  • Sairam RK, Rao KV, Srivastava GC (2002) Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci 163:1037–1046

    Article  CAS  Google Scholar 

  • Salin ML (1991) Chloroplast and mitochondrial mechanism for protection against oxygen toxicity. Free Radical Res Commun 12:851–858

    Article  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  • Thomas CE, McLean LR, Parkar RA, Ohleweiler DF (1992) Ascorbate and phenolic antioxidant interactions in prevention of liposomal oxidation. Lipids 27:543–550

    Article  CAS  PubMed  Google Scholar 

  • Turkan I, Bor M, Ozdemir F, Koca H (2005) Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci 168:223–231

    Article  CAS  Google Scholar 

  • van den Berg L, Zeng YJ (2006) Response of South African indigenous grass species to drought stress induced by polyethylene glycol (PEG) 6000. S Afr J Bot 72:284–286

    Article  Google Scholar 

  • Vyas D, Kumar S (2005) Purification and partial characterization of a low temperature responsive Mn-SOD from tea (Camellia sinensis (L.) O. Kuntze). Biochem Biophys Res Commun 329:831–838

    Article  CAS  PubMed  Google Scholar 

  • Wahida A, Perveena M, Gelania S, Basrab SMA (2007) Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J Plant Physiol 164:283–294

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang LJ, Huang WD, Li JY, Liu YF, Shi YL (2004) Peroxidation of membrane lipid and Ca2+ homeostasis in grape mesophyll cells during the process of cross-adaptation to temperature stresses. Plant Sci 167:71–77

    Article  CAS  Google Scholar 

  • **ong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Li JL, Zhang XQ, Wei H, Cui LJ (2006) Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environ Exp Bot 56:274–285

    Article  CAS  Google Scholar 

  • Xu PL, Guo YK, Bai JG, Shang L, Wang XJ (2008) Effects of long-term chilling on ultrastructure and antioxidant activity in leaves of two cucumber cultivars under low light. Physiol Plant 132:467–478

    Article  CAS  PubMed  Google Scholar 

  • Xue T, Hartikainen H, Piironen V (2001) Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant Soil 237:55–61

    Article  CAS  Google Scholar 

  • Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S (2000) Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol 123:223–234

    Article  CAS  PubMed  Google Scholar 

  • Zhang JX, Kirkham MB (1996) Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytol 132:361–373

    Article  CAS  Google Scholar 

  • Zhang JH, Huang WD, Liu YP, Pan QH (2005) Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. **gxiu) under cross-temperature stresses. J Integr Plant Biol 47:959–970

    Article  Google Scholar 

  • Zhang MC, Duan LS, Tian XL, He ZP, Li JM, Wang BM, Li ZH (2007) Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones and antioxidant system. J Plant Physiol 164:709–717

    Article  CAS  PubMed  Google Scholar 

  • Zhang MC, Zhai ZX, Tian XL, Duan LS, Li ZH (2008) Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L.). Plant Growth Regul 56:257–264

    Article  CAS  Google Scholar 

  • Zhao HZ, Yang HQ (2008) Exogenous polyamines alleviate the lipid peroxidation induced by cadmium chloride stress in Malus hupehensis Rehd. Sci Hortic 116:442–447

    Article  CAS  Google Scholar 

  • Zhu Z, Wei G, Li J, Qian Q, Yu J (2004) Silicon alleviates salt stress and increases antioxidant enzyme activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Erica Fishel of Washington University, St. Louis, Missouri, for editing the manuscript for English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Gang Bai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, ZJ., Guo, YK. & Bai, JG. Exogenous Hydrogen Peroxide Changes Antioxidant Enzyme Activity and Protects Ultrastructure in Leaves of Two Cucumber Ecotypes Under Osmotic Stress. J Plant Growth Regul 29, 171–183 (2010). https://doi.org/10.1007/s00344-009-9121-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-009-9121-8

Keywords

Navigation