Log in

Spatial and temporal variation of picoplankton distribution in the Yellow Sea, China

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Seven surveys were carried out in April, September, October, December 2006 and March, May, August 2007 in the Yellow Sea, China. Variations in the spatial and temporal distribution of Synechococcus, picoeukaryotes and heterotrophic bacteria are quantified using flow cytometry. Synechococcus and heterotrophic bacteria are most abundant from late spring to autumn, while picoeukaryotes concentration is high in spring. Synechococcus and heterotrophic bacteria concentrated high in the northwest part of the Yellow Sea in spring and autumn, while picoeukaryotes distributed evenly over the whole study area except for a small frontal zone in the coastal area on the west (in spring) and central Yellow Sea (in autumn). Under mixing conditions, the vertical distribution of the three picoplankton groups showed a well-mixed pattern. Upon a well-established stratification, the maximum abundance of picoplankton occurred above the mixed layer depth (∼30 m). Cell sizes of Synechococcus and picoeukaryotes were estimated by converting forward scatter signals (FSC) from cytometry analysis to cell diameter, showing the results of 0.65–0.82 μm for Synechococcus and 0.85–1.08 μm for picoeukaryotes. The average integrated carbon biomasses ranged 15.26–312.62 mgC/m2 for Synechococcus, 18.54–61.57 mgC/m2 for picoeukaryotes, and 402.63–818.46 mgC/m2 for heterotrophic bacteria. The distribution of Synechococcus and heterotrophic bacteria was temperature dependent, and picoplankton presence was poor in the Yellow Sea Cold Water Mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agawin N S R, Duarte C M, Agustí S. 1998. Growth and abundance of Synechococcus sp. in a Mediterranean Bay: seasonality and relationship with temperature. Mar. Ecol. Prog. Ser., 170: 45–53.

    Article  Google Scholar 

  • Agawin N S R, Duarte C M, Agustí S. 2000. Nutrientand temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr., 45: 591–600.

    Article  Google Scholar 

  • Blanchot J, Andre J M, Navarette C, Neveuxd J, Radenac M H. 2001. Picophytoplankton in the equatorial Pacific: vertical distribution in the warm pool and in the high nutrient low chlorophyll conditions. Deep-Sea Research I, 48: 297–314.

    Article  Google Scholar 

  • Calvo-Díaz A, Morán X A G. 2006. Seasonal dynamics of picoplankton in shelf waters of the southern Bay of Biscay. Aquatic Microbial Ecology, 42(2): 159–174.

    Article  Google Scholar 

  • Caron D A, Lim E L, Miceli G, Waterbury J B, Valois F W. 1991. Grazing and utilization of chroococcoid cyanobacteria and heterotrophic bacteria by protozoa in laboratory cultures and a coastal plankton community. Mar. Ecol. Prog. Ser., 76(3): 205–217.

    Article  Google Scholar 

  • Chiang K P, Kuo M C, Chang J, Wang R H, Gong G C. 2002. Spatial and temporal variation of the Synechococcus population in the East China Sea and its contribution to phytoplankton biomass. Continental Shelf Research, 22(1): 3–13.

    Article  Google Scholar 

  • Chisholm S W, Olson R J, Zettler E R, Goericke R, Waterbury J B, Welschmeyer N A. 1988. A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature, 334: 340–343.

    Article  Google Scholar 

  • Diao H X, Shen Z L. 1985. The vertical distribution of chemical factors in the Yellow Sea Cold Water. Studia Marina Sinica., 25: 41–51. (in Chinese)

    Google Scholar 

  • DuRand M D, Olson R J, Chisholm S W. 2001. Phytoplankton population dynamics at the Bermuda Atlantic Time-series station in the Sargasso Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 48(8–9): 1 983–2 003.

    Google Scholar 

  • Fuhrman J A, Azam F. 1980. Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Appl. Environ. Microbiol., 39(6): 1 085–1 095

    Google Scholar 

  • Fuhrman J A, Sleeter T D, Carlson C A, Proctor L M. 1989. Dominance of bacterial biomass in the Sargasso Sea and its ecological implications. Mar. Ecol. Prog. Ser., 57: 207–217.

    Article  Google Scholar 

  • Grob C, Ulloa O, Li W K M, Alarcon G, Fukasawa M, Watanabe Shuichi. 2007. Picoplankton abundance and biomass across the eastern South Pacific Ocean along latitude 32.5 S. Mar. Ecol. Prog. Ser., 332: 53–62.

    Article  Google Scholar 

  • Hansell D A, Carlson C A. 1998. Net community production of dissolved organic carbon. Global Biogeochemical Cycles., 12(3): 443–454.

    Article  Google Scholar 

  • Jochem F. 1988. On the distribution and importance of picocyanobacteria in a boreal inshore area (Kiel Bight, Western Baltic). Journal of plankton research, 10(55): 1 009–1 022.

    Google Scholar 

  • Johnson P W, Sieburth J M. 1979. Chroococcoid Cyanobacteria in the Sea: A Ubiquitous and Diverse Phototrophic Biomass. Limnol. Oceanogr., 24(5): 928–935.

    Article  Google Scholar 

  • Krempin D W, Sullivan C W. 1981. The seasonal abundance, vertical distribution, and relative microbial biomass of chroococ-coid cyanobacteria at a station in southern California coastal waters. Can. J. Microbio., 27: 1 341–1 344.

    Google Scholar 

  • Lee S, Fuhrman J A. 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Applied and Environmental Microbiology, 53: 1 298–1 303.

    Google Scholar 

  • Lemée R, Rochelle-Newall E, Van Wambeke F, Pizay M D, Rinaldi P, Gattuso J P. 2002. Seasonal variation of bacterial production, respiration and growth efficiency in the open NW Mediterranean Sea. Aquat Microb Ecol., 29: 227–237.

    Article  Google Scholar 

  • Li H B, **ao T, Ding T, Lü R. 2006. Effect of the Yellow Sea Cold Water Mass (YSCWM) on distribution of bacterioplankton. Acta Ecologica Sinica, 26(4): 1 012–1 020.

    Google Scholar 

  • Li W K W. 1998. Annual average abundance of heterotrophicbacteria and Synechococcus in surface ocean waters. Limnol. Oceanogr., 43: 1 746–1 753.

    Article  Google Scholar 

  • Liu H, Chang J, Tseng C M, Wen L S, Liu K K. 2007. Seasonal variability of picoplankton in the Northern South China Sea at the SEATS station. Deep Sea Research Part II: Topical Studies in Oceanography., 54(14–15): 1 602–1 616.

    Google Scholar 

  • Marie D, Partensky F, Simon N, Guillou L, Vaulot D. 2000a. Flow cytometry analysis of marine picoplankton. In: Diamond R A, DeMaggio S ed. In Living Colors: Protocols in Flow Cytometry and Cell Sorting. Springer-Verlag, New York. p.421–454.

    Google Scholar 

  • Marie D, Simon N, Guillou L, Partensky F, Vaulot D. 2000b. DNA, RNA analysis of phytoplankton by flow cytometry. In: Robinson J P, Darzynkiewicz Z, Dean P N, Orfao A, Rabinovitch P S, Stewart C C, Tanke H J, Wheeless L L ed. Current protocols in cytometry, Suppl 11, Unit 11.12. John Wiley & Sons, New York. p.1–16.

    Google Scholar 

  • Olson R J, Zettler E R, Anderson O K. 1989. Discrimination of eukaryotic phytoplankton cell types from light scatter and autofluorescence properties measured by flow cytometry. Cytometry, 10: 636–643.

    Article  Google Scholar 

  • Olson R J, Zettler E R, du Rand M D. 1993. Phytoplankton analysis using flow cytometry. In: Kemp P F, Sherr B F, Sherr E B, Cole J J ed. Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, FL. p. 175–186.

    Google Scholar 

  • Partensky F, Blanchot J, Lantoine F, Neveux J, Marie D. 1996. Vertical structure of picophytoplankton at different trophic sites of the tropical northeastern Atlantic Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 43(8): 1 191–1 213.

    Article  Google Scholar 

  • Shalapyonok A, Olson R J, Shalapyonok L S. 2001. Arabian Sea phytoplankton during Southwest and Northeast Monsoons 1995: composition, size structure and biomass from individual cell properties measured by flow cytometry. Deep-Sea Research II, 48: 1 231–1 261.

    Article  Google Scholar 

  • Smith R, Hall J. 1997. Bacterial abundance and production in different water masses around South Island, New Zealand. New Zealand Journal of Marine and Freshwater Research, 31: 515–524.

    Article  Google Scholar 

  • Verity P, Robertson C Y, Tronzo C R, Andrews M G, Nelson J R, Sieracki M E. 1992. Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol. Oceanogr., 37(7): 1 434–1 446.

    Article  Google Scholar 

  • Wang B D. 2000. Characteristics of variations and interrelations of biogenic elements in the Huanghai Sea Cold Water Mass. Acta Oceanologica Sinica., 22(6): 47–54. (in Chinese)

    Google Scholar 

  • Waterbury J B, Watson S W, Guillard R R L, Brand L E. 1979. Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium. Nature, 277: 293–294.

    Article  Google Scholar 

  • Worden A Z, Nolan J K, Palenik B. 2004. Assessing the dynamics and ecology of marine picophytoplankton: The importance of the eukaryotic component. Limnol. Oceanogr., 49(1): 168–179.

    Article  Google Scholar 

  • **ao T, Yue H D, Zhang W C, Wang R. 2003. Distribution of Synechococcus and its role in the microbial food loop in the East China Sea. Oceanologr. Limnol. Sin., 34(1): 33–43.

    Google Scholar 

  • Zhang S W, **a C S, Yuan Y L. 2002. Physical-biochemical coupling model of Yellow Sea Cold Water Mass. Progress in Natural Science, 12: 315–321. (in Chinese)

    Google Scholar 

  • Zubkov M V, Sleigh M A, Burkill P H, Leakey R J G. 2000. Picoplankton community structure on the Atlantic Meridional Transect: a comparison between seasons. Progress in Oceanography, 45(3–4): 369–386.

    Article  Google Scholar 

  • Zubkov M V, Sleigh M A, Tarran G A, Burkill P, Leakey R J G. 1998. Picoplanktonic community structure on an Atlantic transect from 50°N to 50°S. Deep Sea Research Part I: Oceanographic Research Papers, 45(8): 1 339–1 355.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian **ao  (肖天).

Additional information

Supported by the National Basic Research Program of China (973 Program) (No. 2011CB409804), the National High Technology Research and Development Program of China (863 Program) (No. 2007AA09Z434), and the Knowledge Innovation Project, CAS (No. KZCX2-YW-213-3)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Zhao, L., **ao, T. et al. Spatial and temporal variation of picoplankton distribution in the Yellow Sea, China. Chin. J. Ocean. Limnol. 29, 150–162 (2011). https://doi.org/10.1007/s00343-011-9086-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-011-9086-x

Keyword

Navigation