Log in

A long-lived Zeeman trapped-ion qubit

  • Rapid Communication
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We demonstrate unprecedentedly long lifetimes for electron spin superposition states of a single trapped \(^{40}\)Ca\(^+\) ion. For a Ramsey measurement, we achieve a \(1{/}\sqrt{e}\) coherence time of 300(50) ms, while a spin-echo experiment yields a coherence time of 2.1(1) s. The latter corresponds to residual effective rms magnetic field fluctuations \({\le }2.7\times 10^{-12}\,\hbox {T}\) during a measurement time of about 1500 s. The suppression of decoherence induced by fluctuating magnetic fields is achieved by combining a two-layer \(\mu\)-metal shield, which reduces external magnetic noise by 20–30 dB for frequencies of 50 Hz–100 kHz, with Sm\(_2\)Co\(_{17}\) permanent magnets for generating a quantizing magnetic field of 0.37 mT. Our results extend the coherence time of the simple-to-operate trapped-ion spin qubit to ultralong coherence times which so far have been observed only for magnetic insensitive transitions in atomic qubits with hyperfine structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. T. Monz, D. Nigg, E.A. Martinez, M.F. Brandl, P. Schindler, R. Rines, S.X. Wang, I.L. Chuang, R. Blatt, Science 351, 1068 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  2. S. Debnath, N.M. Linke, C. Figgatt, K.A. Landsman, K. Wright, C. Monroe, Nature 536, 63 (2016). (letter)

    Article  ADS  Google Scholar 

  3. P. Jurcevic, B.P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, C.F. Roos, Nature 511, 202 (2014). (letter)

    Article  ADS  Google Scholar 

  4. T. Monz, P. Schindler, J.T. Barreiro, M. Chwalla, D. Nigg, W.A. Coish, M. Harlander, W. Hänsel, M. Hennrich, R. Blatt, Phys. Rev. Lett. 106, 130506 (2011)

    Article  ADS  Google Scholar 

  5. S. Haze, T. Ohno, K. Toyoda, S. Urabe, Appl. Phys. B 105, 761 (2011)

    Article  ADS  Google Scholar 

  6. P. Schindler, D. Nigg, T. Monz, J.T. Barreiro, E. Martinez, S.X. Wang, S. Quint, M.F. Brandl, V. Nebendahl, C.F. Roos et al., New J. Phys. 15, 123012 (2013)

    Article  ADS  Google Scholar 

  7. J.J. Bollinger, J.D. Prestage, W.M. Itano, D.J. Wineland, Phys. Rev. Lett. 54, 1000 (1985)

    Article  ADS  Google Scholar 

  8. J. Benhelm, G. Kirchmair, C.F. Roos, R. Blatt, Phys. Rev. A 77, 062306 (2008)

    Article  ADS  Google Scholar 

  9. T.P. Harty, D.T.C. Allcock, C.J. Ballance, L. Guidoni, H.A. Janacek, N.M. Linke, D.N. Stacey, D.M. Lucas, Phys. Rev. Lett. 113, 220501 (2014)

    Article  ADS  Google Scholar 

  10. S. Olmschenk, K.C. Younge, D.L. Moehring, D.N. Matsukevich, P. Maunz, C. Monroe, Phys. Rev. A 76, 052314 (2007)

    Article  ADS  Google Scholar 

  11. N. Timoney, I. Baumgart, M. Johanning, M. Varon, M.B. Plenio, A. Retzker, C. Wunderlich, Nature 476, 185 (2011)

    Article  ADS  Google Scholar 

  12. D. Kielpinski, V. Meyer, M.A. Rowe, C.A. Sackett, W.M. Itano, C. Monroe, D.J. Wineland, Science 291, 1013 (2001)

    Article  ADS  Google Scholar 

  13. C.F. Roos, G.P.T. Lancaster, M. Riebe, H. Häffner, W. Hänsel, S. Gulde, C. Becher, J. Eschner, F. Schmidt-Kaler, R. Blatt, Phys. Rev. Lett. 92, 220402 (2004)

    Article  ADS  Google Scholar 

  14. H. Häffner, F. Schmidt-Kaler, W. Hänsel, C.F. Roos, T. Körber, M. Chwalla, M. Riebe, J. Benhelm, U.D. Rapol, C. Becher et al., Appl. Phys. B 81, 151 (2005)

    Article  ADS  Google Scholar 

  15. T. Monz, K. Kim, A.S. Villar, P. Schindler, M. Chwalla, M. Riebe, C.F. Roos, H. Häffner, W. Hänsel, M. Hennrich et al., Phys. Rev. Lett. 103, 200503 (2009)

    Article  ADS  Google Scholar 

  16. P.A. Ivanov, U.G. Poschinger, K. Singer, F. Schmidt-Kaler, Europhys. Lett. 92, 30006 (2010)

    Article  ADS  Google Scholar 

  17. M.J. Biercuk, H. Uys, A.P. VanDevender, N. Shiga, W.M. Itano, J.J. Bollinger, Nature 458, 996 (2009)

    Article  ADS  Google Scholar 

  18. N. Bar-Gill, L.M. Pham, A. Jarmola, D. Budker, R.L. Walsworth, Nat. Commun. 4, 1743 (2013)

    Article  ADS  Google Scholar 

  19. S. Schulz, U. Poschinger, F. Ziesel, F. Schmidt-Kaler, New J. Phys. 10, 045007 (2008)

    Article  ADS  Google Scholar 

  20. U.G. Poschinger, G. Huber, F. Ziesel, M. Deiss, M. Hettrich, S.A. Schulz, G. Poulsen, M. Drewsen, R.J. Hendricks, K. Singer et al., J. Phys. B: At. Mol. Opt. Phys. 42, 154013 (2009)

    Article  ADS  Google Scholar 

  21. R.B. Blakestad, C. Ospelkaus, A.P. VanDevender, J.H. Wesenberg, M.J. Biercuk, D. Leibfried, D.J. Wineland, Phys. Rev. A 84, 032314 (2011)

    Article  ADS  Google Scholar 

  22. Sekels GmbH (Ober-Mörlen)

  23. IBS Magnet (Berlin)

  24. A. Walther, U. Poschinger, F. Ziesel, M. Hettrich, A. Wiens, J. Welzel, F. Schmidt-Kaler, Phys. Rev. A 83, 062329 (2011)

    Article  ADS  Google Scholar 

  25. Design from the Blatt Group (University of Innsbruck)

  26. T. Monz, Quantum Information Processing Beyond Ten ion-Qubits. Dissertation, Leopold-Franzens Universität Innsbruck (2011)

  27. A. Walther, F. Ziesel, T. Ruster, S.T. Dawkins, K. Ott, M. Hettrich, K. Singer, F. Schmidt-Kaler, U.G. Poschinger, Phys. Rev. Lett. 109, 080501 (2012)

    Article  ADS  Google Scholar 

  28. S. Kotler, N. Akerman, Y. Glickman, A. Keselman, R. Ozeri, Nature 473, 61 (2011)

    Article  ADS  Google Scholar 

  29. C.T. Schmiegelow, H. Kaufmann, T. Ruster, J. Schulz, V. Kaushal, M. Hettrich, F. Schmidt-Kaler, U.G. Poschinger, Phys. Rev. Lett. 116, 033002 (2016)

    Article  ADS  Google Scholar 

  30. G. Gabrielse, J. Tan, J. Appl. Phys. 63, 5143 (1988)

    Article  ADS  Google Scholar 

  31. J.W. Britton, J.G. Bohnet, B.C. Sawyer, H. Uys, M.J. Biercuk, J.J. Bollinger, Phys. Rev. A 93, 062511 (2016)

    Article  ADS  Google Scholar 

  32. The 8-Layered Magnetically Shielded Room of the ptb: Design and Construction. https://www.ptb.de/cms/fileadmin/internet/fachab

  33. S.I. Kanorsky, S. Lang, S. Lücke, S.B. Ross, T.W. Hänsch, A. Weis, Phys. Rev. A 54, R1010 (1996)

    Article  ADS  Google Scholar 

  34. J.P. Gaebler, T.R. Tan, Y. Lin, Y. Wan, R. Bowler, A.C. Keith, S. Glancy, K. Coakley, E. Knill, D. Leibfried et al., Phys. Rev. Lett. 117, 060505 (2016)

    Article  ADS  Google Scholar 

  35. C.J. Ballance, T.P. Harty, N.M. Linke, M.A. Sepiol, D.M. Lucas, Phys. Rev. Lett. 117, 060504 (2016)

    Article  ADS  Google Scholar 

  36. D. Nigg, M. Müller, E.A. Martinez, P. Schindler, M. Hennrich, T. Monz, M.A. Martin-Delgado, R. Blatt, Science 345, 302 (2014)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

The use of permanent magnets was inspired during a visit of CTS and FSK at Tobias Schätz’ labs at Universität Freiburg. We acknowledge earlier contributions of Andrè Kesser for the characterization of the shielding properties of the \(\mu\)-metal enclosure. We further acknowledge helpful discussions with Georg Jacob and Sven Sturm. The research is based upon work supported by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via the US Army Research Office Grants W911NF-10-1-0284 and W911NF-16-1-0070. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the ODNI, IARPA or the US Government. The US Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the view of the US Army Research Office.

W911NF-10-1-0284.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. G. Poschinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruster, T., Schmiegelow, C.T., Kaufmann, H. et al. A long-lived Zeeman trapped-ion qubit. Appl. Phys. B 122, 254 (2016). https://doi.org/10.1007/s00340-016-6527-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6527-4

Keywords

Navigation