Log in

Study on quantitative Rietveld analysis of XRD patterns of different sizes of bismuth ferrite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Bismuth ferrite (BiFeO3 or BFO), is an extremely promising multiferroic material having broad range of applications. In the present study, we investigated the optimization of annealing temperature for the preparation of pure phase bismuth ferrite using quantitative Rietveld analysis of XRD patterns. The rhombohedral structure was confirmed by X-ray diffraction with R3c space group as a primary phase (pure BFO) along with a cubic secondary phase (Bi25FeO40) having space group I23. The quantitative analysis of refine data shows the decrease in the values of fitting parameters in case of double refinement and hence convergence towards the best fitting. Also, with the increase in annealing temperature, very nominal decrease in phase percentage of secondary phase was observed. At annealing temperature of 780 °C, the intensity of (110) planes suddenly becomes more in comparison to (104) planes. The average crystallite size of samples was calculated using Scherrer formula, W–H plot method, and Rietveld method, and lattice strain was derived from the W–H plot method. Overall, the crystallite size increases with the increase in annealing temperature. It has been also observed that the strain, lattice parameters, unit cell volume, and effective bond lengths decrease with the increase in annealing temperature, but no significant change was observed in bond angles with the variation in annealing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. C.N.R. Rao, Annu. Rev. Phys. Chem. 40(1), 291 (1989)

    ADS  Google Scholar 

  2. D. Norton, Mater. Sci. Eng. R 43(5), 139 (2004)

    Google Scholar 

  3. A. Lubk, S. Gemming, N.A. Spaldin, Phys. Rev. B 80, 104110 (2009)

    ADS  Google Scholar 

  4. H. Zhang, N. Li, K. Li, D. Xue, Acta Cryst. B63, 812 (2007)

    Google Scholar 

  5. N.A. Spaldin, M. Fiebig, Science 309(5733), 391 (2005)

    Google Scholar 

  6. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    ADS  Google Scholar 

  7. N.A. Hill, J. Phys. Chem. B 104, 6694 (2000)

    Google Scholar 

  8. J.F. Scott, Nat. Mater. 6, 256 (2007)

    ADS  Google Scholar 

  9. J. Wu, Z. Fan, D. **ao, J. Zhu, J. Wang, Prog. Mater Sci. 84, 335 (2016)

    Google Scholar 

  10. F. Kubel, H. Schmid, Acta Crystallogr. B Struct. Sci. B46(6), 698 (1990)

    Google Scholar 

  11. C. Michel, J.M. Moreau, G.D. Achenbach, R. Gerson, W.J. James, Solid State Commun. 7, 701 (1969)

    ADS  Google Scholar 

  12. E. Mostafavi, A. Ataie, M. Ahmadzadeh, M. Palizdar, T.P. Comyn, A.J. Bell, Mater. Chem. Phys. 162, 106 (2015)

    Google Scholar 

  13. G. Catalan, J.F. Scott, Adv. Mater. 21, 2463 (2009)

    Google Scholar 

  14. C. Michel, J.M. Moreau, G.D. Achenbach, R. Gerson, W.J. James, Solid State Commun. 7, 865 (1969)

    ADS  Google Scholar 

  15. C.M. Raghavan, D. Do, J.W. Kim, W.J. Kim, S.S. Kim, J. Am. Ceram. Soc. 95, 1933 (2012)

    Google Scholar 

  16. I. Sosnowska, T.P. Neumaier, E. Steichele, J. Phys. C Solid State Phys. 15, 4835 (1982)

    ADS  Google Scholar 

  17. A. Palewicz, R. Przenioslo, I. Sosnowska, A.W. Hewat, Acta Cryst. B 63, 537 (2007)

    Google Scholar 

  18. A. Palewicz, I. Sosnowska, R. Przenioslo, A.W. Hewat, Acta Phys. Pol. A 117, 296 (2010)

    ADS  Google Scholar 

  19. T.H. Wang, C.S. Tu, H.Y. Chen, Y. Ding, T.C. Lin, Y.D. Yao, V.H. Schmidt, K.T. Wu, J. Appl. Phys. 109, 044101 (2011)

    ADS  Google Scholar 

  20. H.D. Megaw, C.N.W. Darlington, Acta Cryst. A31, 161 (1975)

    Google Scholar 

  21. V.M. Goldschmidt, Naturwissenschaften 477, 0693 (1926)

    Google Scholar 

  22. R.D. Shannon, Acta Cryst. A 32, 751 (1976)

    Google Scholar 

  23. C. Li, K.C.K. Soh, P. Wu, J. Alloy. Compd. 372, 40 (2004)

    Google Scholar 

  24. P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski, J. Phys. C Solid State Phys. 13, 1931 (1980)

    ADS  Google Scholar 

  25. A. Srivastava, A.K. Singh, O.N. Srivastava, H.S. Tewari, K.B. Masood, J. Singh, Front. Phys. 8, 282 (2020)

    Google Scholar 

  26. T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Nano Lett. 7, 766 (2007)

    ADS  Google Scholar 

  27. Y.H. Lee, J.M. Wu, C.H. Lai, Appl. Phys. Lett. 88(4), 42903 (2006)

    Google Scholar 

  28. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719 (2003)

    ADS  Google Scholar 

  29. R.C. Pullar, Prog. Mater Sci. 57(7), 1191 (2012)

    Google Scholar 

  30. A.K. Ghosh, G.D. Dwivedi, B. Chatterjee, B. Rana, A. Barman, S. Chatterjee, H.D. Yang, Solid State Commun. 166, 22 (2013)

    ADS  Google Scholar 

  31. M.I. Morozov, N.A. Lomanova, V.V. Gusarov, Russ. J. Gen. Chem. 73, 1676 (2003)

    Google Scholar 

  32. A.Z. Simões, F.G. Garcia, C.S. Riccardi, J. Alloys Compd. 493, 158 (2010)

    Google Scholar 

  33. D. Maurya, H. Thota, K.S. Nalwa, A. Garg, J. Alloys Compd. 477, 780 (2009)

    Google Scholar 

  34. K.L. Yadav, J. Nanosci. Nanotechnol. 11, 2682 (2011)

    Google Scholar 

  35. Q. Zhang, X. Zhu, Y. Xu, H. Gao, Y. **ao, D. Liang, J. Zhu, J. Zhu, D. **ao, J. Alloys Compd. 546, 57 (2013)

    Google Scholar 

  36. J. Zhao, X. Zhang, S. Liu, W. Zhang, Z. Liu. J. Alloys Compd. 557, 120 (2013)

    Google Scholar 

  37. T. Murtaza, I.A. Salmani, J. Ali, M.S. Khan, J. Mater. Sci. Mater. Electron. 29, 5110 (2018)

    Google Scholar 

  38. H. Miao, Q. Zhang, G. Tan, G. Zhu, J. Wuhan Univ. Technol. Math. Sci. Ed. 23, 507 (2008)

    Google Scholar 

  39. G. Biasotto, A. Simões, C. Foschini, S. Antônio, M. Zaghete, J. Varela, Process. Appl. Ceram. 5, 171 (2011)

    Google Scholar 

  40. H.M. Hashem, M.H. Hamed, Mater. Chem. Phys. 211, 445 (2018)

    Google Scholar 

  41. P. Kumar, M. Kar, J. Alloys. Compd. 584, 566 (2014)

    Google Scholar 

  42. Y. Mao, T.-J. Park, S.S. Wong, Chem. Comm. 46, 5721 (2005)

    Google Scholar 

  43. W. Ahmad Wani, S. Kundu, K. Ramaswamy, B. Harihara Venkataraman, SN Appl. Sci. 2, 1969 (2020)

    Google Scholar 

  44. M. Abushad, W. Khan, S. Naseem, S. Husain, M. Naseem, A. Ansari, Ceram. Int. 45(6), 7437 (2019)

    Google Scholar 

  45. D. Carranza-Ceils, A. Cardona-Rodriguez, J. Narvaez, O. Moscoso-Londono, D. Muraca, M. Knobel, N. Ornelas-Soto, A. Reiber, J. Gabriel Ramirez, Sci Rep. 9, 3182 (2019)

    ADS  Google Scholar 

  46. Y. Wu, X. Han, H. Huang, J. Phys. Chem. C 122(12), 6852 (2018)

    Google Scholar 

  47. H.M. Jang, H. Han, J.-H. Lee, Sci. Rep. 8, 405 (2018)

    ADS  Google Scholar 

  48. A.K. Zak, W.A. Majid, M.E. Abrishami, R. Yousefi, Solid State Sci. 13(1), 251 (2011)

    ADS  Google Scholar 

  49. Y. Shahmoradi, D. Souri, M. Khorshidi, Ceram. Int. 45(5), 6459 (2019)

    Google Scholar 

  50. A.L. Patterson, Phys. Rev. 56, 978 (1939)

    ADS  Google Scholar 

  51. S. Carbonin, F. Martignago, G. Menegazzo, A. Negro, Phys. Chem. Miner. 29, 503 (2002)

    ADS  Google Scholar 

  52. R. Pandu, K.L. Yadav, A. Kumar, P. RavinderReddy, A.V.S.S.K.S. Gupta, Indian J. Eng. Mater. Sci. 17, 481 (2010)

    Google Scholar 

  53. L. Kumar, P. Kumar, A. Narayan, M. Kar, Int. Nano Lett. 3, 8 (2013)

    Google Scholar 

  54. R.A. Young, The Rietveld Method, 3rd edn (Oxford University Press, Oxford, 1993)

    Google Scholar 

  55. V. Kumar, S. Kumari, P. Kumar, M. Kar, L. Kumar, Adv. Mater. Lett. 6(2), 139 (2015)

    Google Scholar 

  56. J. Rodriguez-Carvajal, Phys. B 192, 55 (1993)

    ADS  Google Scholar 

  57. F. Bhadala, L. Suthar, P. Kumari, M. Roy, Mater. Chem. Phys. 247, 122719 (2020)

    Google Scholar 

  58. S. Chauhan, M. Kumar, H. Pandey, S. Chhoker, S.C. Katyal, J. Alloys Compd. 811, 151965 (2019)

    Google Scholar 

  59. F. Jabeen, R. Shahid, M.S. Khan, R. Pandey, Appl. Phys. A 126, 366 (2020)

    ADS  Google Scholar 

  60. A. Reetu, S. Agarwal, A. Sanghi, N. Ahlawat, J. Appl. Phys. 113, 023908 (2013)

    ADS  Google Scholar 

  61. P.F. Fewster, Crit. Rev. Solid State Mater. Sci. 22, 69 (1997)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Mahatma Gandhi Central University, Bihar, IIT Patna and Patna Women’s College, Patna for extending experimental facilities.

Funding

The authors declares that there is no competing final interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surabhi Prasad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, S., Shekhar, M., Kumar, P. et al. Study on quantitative Rietveld analysis of XRD patterns of different sizes of bismuth ferrite. Appl. Phys. A 128, 1046 (2022). https://doi.org/10.1007/s00339-022-06171-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06171-y

Keywords

Navigation