Log in

UWB dual-port self-decoupled o-shaped monopole MIMO antenna with small-size easily extendable design and high diversity performance for millimeter-wave 5G applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The millimeter-wave spectrum is deemed as an attractive solution to deal with the urgency of the high-data-rate needed to construct the 5G technology systems. Accordingly, this research work presents a high-isolation ultra-wideband dual-port MIMO antenna, and operates at the pioneer 28 GHz band for millimeter-wave 5G applications. The individual antenna consists of a new ring-shaped monopole antenna built on the low loss Rogers RT Duroid 5880 laminate, well-refined to bear a large bandwidth of 10 GHz from 24 to 34 GHz with suitable radiation features including a high radiation efficiency up to 99% and good comparable gain reaches to 5.9 dB. The single-antenna unit is carefully investigated, then exploited to propose a compact orthogonally placed two-port MIMO antenna with small total volume of 11 × 20.5 × 0.254mm3 while provides a strong isolation surpassing 25 dB. The MIMO diversity performance has been neatly evaluated in terms of various essential metrics, where an impressive performance has been proven. The simulation results are experimentally validated for both single and MIMO structures where a great harmony is demonstrated. Moreover, the impact of connected ground plane scheme on the MIMO antenna performance is also discussed, where a gratifying outcomes are accomplished. Besides, the proposed two-element MIMO antenna is further extended to four and eight elements MIMO antennas with connected ground plane configuration. A pretty simple decoupling structures are used, whereas a very satisfying results are fulfilled. The achieved outcomes make the proposed design superior to many existing designs and highly fit for the 5G wireless systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability statement

All data generated or analyzed during this study are included in the manuscript. There is no separated data.

References

  1. W. Ali, S. Das, H. Medkour, S. Lakrit, Planar dual-band 27/39 ghz millimeter-wave mimo antenna for 5G applications. Microsyst. Technol. 27(1), 283–292 (2021). https://doi.org/10.1007/s00542-020-04951-1

    Article  Google Scholar 

  2. M. Nabil, M.M.A. Faisal, Design, simulation and analysis of a high gain small size array antenna for 5g wireless communication. Wireless Pers. Commun. 116(4), 2761–2776 (2021). https://doi.org/10.1007/s11277-020-07819-9

    Article  Google Scholar 

  3. B. Aghoutane, S. Das, H. Faylali El, B.T.P. Madhav, M. Ghzaoui El, A. Alami El, Analysis, design and fabrication of a square slot loaded (ssl) millimeter-wave patch antenna array for 5g applications. J Circuits, Syst Comput 30(05), 2150086 (2021). https://doi.org/10.1142/S0218126621500869

    Article  Google Scholar 

  4. W. Hong, Z.H. Jiang, Y. Chao, J. Zhou, P. Chen, Y. Zhiqiang, H. Zhang, B. Yang, X. Pang, M. Jiang et al., Multibeam antenna technologies for 5g wireless communications. IEEE Trans Antennas Propag 65(12), 6231–6249 (2017). https://doi.org/10.1109/TAP.2017.2712819

    Article  ADS  Google Scholar 

  5. M. Anas, H. Shahid, A. Rauf, A. Shahid, Design of ultra-wide tetra band phased array inverted t-shaped patch antennas using dgs with beam-steering capabilities for 5g applications. Int. J. Microw. Wirel. Technol. 12(5), 419–430 (2020). https://doi.org/10.1017/S1759078719001594

    Article  Google Scholar 

  6. J.G. Andrews, S. Buzzi, W. Choi, S.V. Hanly, A. Lozano, A.C.K. Soong, J.C. Zhang, What will 5g be? IEEE J Select Areas Commun 32(6), 1065–1082 (2014). https://doi.org/10.1109/JSAC.2014.2328098

    Article  Google Scholar 

  7. D.A. Sehrai, M. Abdullah, A. Altaf, S.H. Kiani, F. Muhammad, M. Tufail, M. Irfan, A. Glowacz, S. Rahman, A novel high gain wideband mimo antenna for 5g millimeter wave applications. Electronics 9(6), 1031 (2020). https://doi.org/10.3390/electronics9061031

    Article  Google Scholar 

  8. S.F. Jilani, Q.H. Abbasi, M.A. Imran, A. Alomainy, Design and analysis of millimeter-wave antennas for the fifth generation networks and beyond. Wiley 5G Ref: the essential 5G reference online (Wiley, Hoboken, 2019)

    Google Scholar 

  9. S.F. Jilani, A. Alomainy, Millimetre-wave t-shaped mimo antenna with defected ground structures for 5g cellular networks. IET Microw Antennas Propag 12(5), 672–677 (2018). https://doi.org/10.1049/iet-map.2017.0467

    Article  Google Scholar 

  10. J. Choi, J. Park, Y. Youn, W. Hwang, H. Seong, Y.N. Whang, W. Hong, Frequency-adjustable planar folded slot antenna using fully integrated multithrow function for 5g mobile devices at millimeter-wave spectrum. IEEE Trans Microw Theory Tech 68(5), 1872–1881 (2020). https://doi.org/10.1109/TMTT.2019.2961088

    Article  ADS  Google Scholar 

  11. Y. Ghazaoui, A. El Alami, M. El Ghzaoui, S. Das, D. Barad, S. Mohapatra, Millimeter wave antenna with enhanced bandwidth for 5g wireless application. J. Instrum. 15(01), T01003 (2020). https://doi.org/10.1088/17480221/15/01/T01003

    Article  Google Scholar 

  12. M.M. Kamal, S. Yang, S.H. Kiani, D.A. Sehrai, M. Alibakhshikenari, M. Abdullah, F. Falcone, E. Limiti, M. Munir, A novel hook-shaped antenna operating at 28 ghz for future 5g mmwave applications. Electronics 10(6), 673 (2021). https://doi.org/10.3390/electronics10060673

    Article  Google Scholar 

  13. R. Przesmycki, M. Bugaj, L. Nowosielski, Broadband microstrip antenna for 5g wireless systems operating at 28 ghz. Electronics 10(1), 1 (2021). https://doi.org/10.3390/electronics10010001

    Article  Google Scholar 

  14. H. Ullah, F.A. Tahir, A high gain and wideband narrow-beam antenna for 5g millimeter-wave applications. IEEE Access. 8, 29430–29434 (2020). https://doi.org/10.1109/ACCESS.2020.2970753

    Article  Google Scholar 

  15. S. Rangan, T.S. Rappaport, E. Erkip, Millimeter-wave cellular wireless networks: potentials and challenges. Proc of the IEEE. 102(3), 366–385 (2014). https://doi.org/10.1109/JPROC.2014.2299397

    Article  Google Scholar 

  16. S.K. Gupta, A. Bage, A compact, dual-band antenna with defected ground structure for 5g applications. J Circuits Syst Comput 30(16), 150298–150301 (2021). https://doi.org/10.1142/S0218126621502984

    Article  Google Scholar 

  17. M.N. Hasan, S. Bashir, S. Chu, Dual band omnidirectional millimeter wave antenna for 5g communications. J Electromagn Waves Appl. 33(12), 1581–1590 (2019). https://doi.org/10.1080/09205071.2019.1617790

    Article  Google Scholar 

  18. A.A.R. Saad, H.A. Mohamed, Printed millimeter-wave mimo based slot antenna arrays for 5g networks. AEU Int J Electron Commun 99, 59–69 (2019). https://doi.org/10.1016/j.aeue.2018.11.029

    Article  Google Scholar 

  19. C.L. Bamy, F.M. Mbango, D.B.O. Konditi, P.M. Mpele, A compact dual-band dolly-shaped antenna with parasitic elements for automotive radar and 5g applications. Heliyon 7(4), e06793 (2021). https://doi.org/10.1016/j.heliyon.2021.e06793

    Article  Google Scholar 

  20. M. Khalid, S.I. Naqvi, N. Hussain, M.U. Rahman, S.S. Mirjavadi, M.J. Khan, Y. Amin et al., 4-port mimo antenna with defected ground structure for 5g millimeter wave applications. Electronics 9(1), 71 (2020). https://doi.org/10.3390/electronics9010071

    Article  Google Scholar 

  21. D.A. Sehrai, M. Asif, N. Shoaib, M. Ibrar, S. Jan, M. Alibakhshikenari, A. Lalbakhsh, E. Limiti, Compact quad-element high-isolation wideband mimo antenna for mm-wave applications. Electronics 10(11), 1300 (2021). https://doi.org/10.3390/electronics10111300

    Article  Google Scholar 

  22. H.M. Marzouk, M.I. Ahmed, A.H.A. Shaalan, Novel dual-band 28/38 ghz mimo antennas for 5g mobile applications. Prog Electromagn Res C 93, 103–117 (2019). https://doi.org/10.2528/PIERC19032303

    Article  Google Scholar 

  23. E.A. Abbas, M. Ikram, A.T. Mobashsher, A. Abbosh, Mimo antenna system for multi-band millimeter-wave 5g and wideband 4g mobile communications. IEEE Access 7, 181916–181923 (2019). https://doi.org/10.1109/ACCESS.2019.2958897

    Article  Google Scholar 

  24. M. Usman, E. Kobal, J. Nasir, Y. Zhu, Yu. Chao, A. Zhu, Compact siw fed dual-port single element annular slot mimo antenna for 5g mmwave applications. IEEE Access 9, 91995–92002 (Jun. 2021). https://doi.org/10.1109/ACCESS.2021.3091835

    Article  Google Scholar 

  25. C.A. Balanis, Antenna theory: analysis and design (Wiley, Hoboken, 2015)

    Google Scholar 

  26. F. Amin, R. Saleem, T. Shabbir, M. Bilal, M.F. Shafique et al., A compact quad-element uwb-mimo antenna system with parasitic decoupling mechanism. Appl Sci 9(11), 2371 (2019). https://doi.org/10.3390/app9112371

    Article  Google Scholar 

  27. Y. Lu, Y. Huang, H.T. Chattha, P. Cao, Reducing ground-plane effects on uwb monopole antennas. IEEE Antennas Wireless Propag Lett 10, 147–150 (2011). https://doi.org/10.1109/LAWP.2011.2119459

    Article  ADS  Google Scholar 

  28. M. Alibakhshikenari, F. Babaeian, B.S. Virdee, S.A. ̈ıssa, L. Azpilicueta, C.H. See, A.A. Althuwayb, I. Huynen, R.A. Abd-Alhameed, F. Falcone et al., A comprehensive survey on “various decoupling mechanisms with focus on metamaterial and metasurface principles applicable to sar and mimo antenna systems.” IEEE Access 8, 192965–193004 (2020). https://doi.org/10.1109/ACCESS.2020.3032826

    Article  Google Scholar 

  29. A.K. Dwivedi, A. Sharma, A.K. Singh, V. Singh, Design of dual band four port circularly polarized mimo dra for wlan/wimax applications. J Electromagn Waves Appl 34(15), 1990–2009 (2020). https://doi.org/10.1080/09205071.2020.1801522

    Article  Google Scholar 

  30. A.K. Dwivedi, A. Sharma, A.K. Pandey, V. Singh, Two port circularly polarized mimo antenna design and investigation for 5g communication systems. Wireless Pers Commun (2021). https://doi.org/10.1007/s11277-021-08461-9

    Article  Google Scholar 

  31. G. Varshney, S. Gotra, V.S. Pandey, R.S. Yaduvanshi, Proximity-coupled two-port multi-input-multi-output graphene antenna with pattern diversity for thz applications. Nano Commun Netw 21, 100246 (2019). https://doi.org/10.1016/j.nancom.2019.05.003

    Article  Google Scholar 

  32. A. Kumar, A.Q. Ansari, B.K. Kanaujia, J. Kishor, A novel iti-shaped isolation structure placed between two-port cpw-fed dual-band mimo antenna for high isolation. AEU Int J Electron Commun 104, 35–43 (2019). https://doi.org/10.1016/j.aeue.2019.03.009

    Article  Google Scholar 

  33. A Khabba, S Errahili, S Ibnyaich, A Zeroual (2021) A new 2 × 2mimo trapezoidal shaped antenna with high gain and wide bandwidth for 37–40 GHz millimeter wave applications. In Proceedings of the 4th International Conference on Networking, Information Systems Security. https://doi.org/10.1145/3454127.3456584

  34. B. Aghoutane, S. Das, M. El Ghzaoui, B.T.P. Madhav, H. El Faylali, A novel dual band high gain 4-port millimeter wave mimo antenna array for 28/37 ghz 5g applications. AEU Int J Electron Commun 145, 154071 (2022). https://doi.org/10.1016/j.aeue.2021.154071

    Article  Google Scholar 

  35. S.I. Naqvi, N. Hussain, A. Iqbal, M. UrRahman, M. Forsat, S.S. Mirjavadi, Y. Amin, Integrated LTE and millimeter-wave 5G mimo antenna system for 4G/5G wireless terminals. Sensors 20(14), 3926 (2020). https://doi.org/10.3390/s20143926

    Article  ADS  Google Scholar 

  36. M. Venkateswara Rao, B.T.P. Madhav, J. Krishna, Y. Usha Devi, T. Anilkumar, B. Prudhvi Nadh, Csrr-loaded t-shaped mimo antenna for 5g cellular networks and vehicular communications. Int J RF Microw Comput-Aided Eng 29(8), e21799 (2019). https://doi.org/10.1002/mmce.21799

    Article  Google Scholar 

  37. H. Zahra, W.A. Awan, W.A.E. Ali, N. Hussain, S.M. Abbas, S. Mukhopadhyay, A 28 Ghz broadband helical inspired end-fire antenna and its mimo configuration for 5g pattern diversity applications. Electronics 10(4), 405 (2021). https://doi.org/10.3390/electronics10040405

    Article  Google Scholar 

  38. Y. Zhang, J.-Y. Deng, M.-J. Li, D. Sun, L.-X. Guo, A mimo dielectric resonator antenna with improved isolation for 5G mm-wave applications. IEEE Antennas Wirel. Propag. Lett. 18(4), 747–751 (2019). https://doi.org/10.1109/LAWP.2019.2901961

    Article  ADS  Google Scholar 

  39. A. Patel, A. Desai, I. Elfergani, A. Vala, H. Mewada, K. Mahant, S. Patel, C. Zebiri, J. Rodriguez, E. Ali, UWB CPW fed 4-port connected ground MIMO antenna for sub-millimeter-wave 5G applications. Alex. Eng. J. 61(9), 6645–6658 (2022). https://doi.org/10.1016/j.aej.2021.12.015

    Article  Google Scholar 

  40. S.M. El-nady, A.M. Attiya, Periodically-stub-loaded microstrip line wideband circularly polarized millimeter wave MIMO antenna. IEEE Access 10, 20465–20472 (2022). https://doi.org/10.1109/ACCESS.2022.3152222

    Article  Google Scholar 

  41. R. Hussain, M. Abou-Khousa, N. Iqbal, A. Algarni, S.I. Alhuwaimel, A. Zerguine, M.S. Sharawi, A multiband shared aperture MIMO antenna for millimeter-wave and sub-6GHz 5G applications. Sensors 22(5), 1808 (2022). https://doi.org/10.3390/s22051808

    Article  ADS  Google Scholar 

  42. D. Sharma, R. Katiyar, A.K. Dwivedi, K.N. Nagesh, A. Sharma, P. Ranjan, Dielectric resonator-based two-port filtennas with pattern and space diversity for 5G IoT applications. Int J Microw Wireless Technol (2022). https://doi.org/10.1017/S1759078722000150

    Article  Google Scholar 

  43. A. Kumar, A.K. Dwivedi, K.N. Nagesh, A. Sharma, P. Ranjan, Circularly polarised dielectric resonator based two port filtenna for millimeter-wave 5G communication system. IETE Tech Rev (2022). https://doi.org/10.1080/02564602.2022.2028588

    Article  Google Scholar 

Download references

Funding

No funding was received for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asma Khabba.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interests.

Ethics approval

The approval was assured by all authors.

Consent to participate

The approval was assured by all authors.

Consent for publication

All the authors have given the permission for the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khabba, A., Amadid, J., Mohapatra, S. et al. UWB dual-port self-decoupled o-shaped monopole MIMO antenna with small-size easily extendable design and high diversity performance for millimeter-wave 5G applications. Appl. Phys. A 128, 725 (2022). https://doi.org/10.1007/s00339-022-05881-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05881-7

Keywords

Navigation