Log in

Study on laser ablation of glass using MHz-to-GHz burst pulses

  • S.I. : COLA 2021/2022
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The authors report on the use of a burst-mode ultrashort pulsed laser source with an emitting wavelength of 1030 nm on to micro-machining plane areas of glass with different pulse durations, burst energies, and number of sub-pulses per burst with intra-burst rates of 65 MHz and 2.5 GHz. In the investigated parameter range, the maximum specific removal rates are obtained with \(11.2\,\upmu \text{m}^{3}/\upmu \text{J}\) for MHz bursts and \(27.0\,\upmu \text{m}^{3}/\upmu \text{J}\) for GHz bursts, being up to four times higher compared to the non-burst regime. The depth per scan and the surface roughness increase at higher burst energies and at a higher number of sub-pulses per burst, respectively. Furthermore, a significant difference in the resulting surface topography between MHz and GHz bursts is shown by SEM images, mainly depending on the number of sub-pulses per burst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statement

All data investigated through this study are included in this manuscript.

References

  1. M. Perry, B. Stuart, P. Banks, M. Feit, V. Yanovsky, A. Rubenchik, J. Appl. Phys. 85(9), 6803 (1999). https://doi.org/10.1063/1.370197

    Article  ADS  Google Scholar 

  2. H. Misawa, S. Juodkazis, 3D Laser Microfabrication: Principles and Applications (Wiley, New York, 2006)

    Book  Google Scholar 

  3. K. Sugioka, Y. Cheng, Light Sci. Appl. 3(4), e149 (2014). https://doi.org/10.1038/lsa.2014.30

    Article  ADS  Google Scholar 

  4. G. Lott, N. Falletto, P.J. Devilder, R. Kling, J. Laser Appl. 28(2), 022206 (2016). https://doi.org/10.2351/1.4944509

    Article  ADS  Google Scholar 

  5. S. Richter, S. Döring, A. Tünnermann, S. Nolte, Appl. Phys. A 103(2), 257 (2011). https://doi.org/10.1007/s00339-011-6369-1

    Article  ADS  Google Scholar 

  6. F. Zimmermann, S. Richter, S. Döring, A. Tünnermann, S. Nolte, Appl. Opt. 52(6), 1149 (2013). https://doi.org/10.1364/AO.52.001149

    Article  ADS  Google Scholar 

  7. L. Keldysh et al., Sov. Phys. JETP 20(5), 1307 (1965)

    MathSciNet  Google Scholar 

  8. L. Fechner, High-Resolution Experiments on Strong-Field Ionization of Atoms and Molecules: Test of Tunneling Theory, the Role of Doubly Excited States, and Channel-Selective Electron Spectra (Springer, Berlin, 2016)

    Book  Google Scholar 

  9. B. Stuart, M. Feit, S. Herman, A. Rubenchik, B. Shore, M. Perry, Phys. Rev. B 53(4), 1749 (1996). https://doi.org/10.1103/PhysRevB.53.1749

    Article  ADS  Google Scholar 

  10. E.G. Gamaly, A.V. Rode, B. Luther-Davies, V.T. Tikhonchuk, Phys. Plasmas 9(3), 949 (2002). https://doi.org/10.1063/1.1447555

    Article  ADS  Google Scholar 

  11. L. Haahr-Lillevang, P. Balling, in Pacific Rim Laser Damage 2015: Optical Materials for High-Power Lasers, vol. 9532 (International Society for Optics and Photonics, 2015), p. 953213. https://doi.org/10.1117/12.2185834

  12. B. Rethfeld, Phys. Rev. Lett. 92(18), 187401 (2004). https://doi.org/10.1103/PhysRevLett.92.187401

    Article  ADS  Google Scholar 

  13. I. Mirza, N.M. Bulgakova, J. Tomáštík, V. Michálek, O. Haderka, L. Fekete, T. Mocek, Sci. Rep. 6(1), 1 (2016). https://doi.org/10.1038/srep39133

    Article  Google Scholar 

  14. B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, JOSA B 13(2), 459 (1996). https://doi.org/10.1364/JOSAB.13.000459

    Article  ADS  Google Scholar 

  15. X. Liu, D. Du, G. Mourou, IEEE J. Quantum Electron. 33(10), 1706 (1997). https://doi.org/10.1109/3.631270

    Article  ADS  Google Scholar 

  16. L. Jiang, H.L. Tsai, J. Appl. Phys. 100(2), 023116 (2006). https://doi.org/10.1063/1.2216882

    Article  ADS  Google Scholar 

  17. D. Giguère, G. Olivié, F. Vidal, S. Toetsch, G. Girard, T. Ozaki, J.C. Kieffer, O. Nada, I. Brunette, JOSA A 24(6), 1562 (2007). https://doi.org/10.1364/JOSAA.24.001562

    Article  ADS  Google Scholar 

  18. B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Légaré, F. Vidal, J. Kieffer, Phys. Rev. B 84(9), 094104 (2011). https://doi.org/10.1103/PhysRevB.84.094104

    Article  ADS  Google Scholar 

  19. M. Lebugle, N. Sanner, N. Varkentina, M. Sentis, O. Utéza, J. Appl. Phys. 116(6), 063105 (2014). https://doi.org/10.1063/1.4892158

    Article  ADS  Google Scholar 

  20. O. Utéza, N. Sanner, B. Chimier, A. Brocas, N. Varkentina, M. Sentis, P. Lassonde, F. Légaré, J. Kieffer, Appl. Phys. A 105(1), 131 (2011). https://doi.org/10.1007/s00339-011-6469-y

    Article  ADS  Google Scholar 

  21. M. Lebugle, N. Sanner, O. Utéza, M. Sentis, Appl. Phys. A 114(1), 129 (2014). https://doi.org/10.1007/s00339-013-8153-x

    Article  ADS  Google Scholar 

  22. D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, Appl. Phys. Lett. 64(23), 3071 (1994). https://doi.org/10.1063/1.111350

    Article  ADS  Google Scholar 

  23. B. Stuart, M. Feit, A. Rubenchik, B. Shore, M. Perry, Phys. Rev. Lett. 74(12), 2248 (1995). https://doi.org/10.1103/PhysRevLett.74.2248

    Article  ADS  Google Scholar 

  24. X. Zeng, X. Mao, S.S. Mao, J.H. Yoo, R. Greif, R.E. Russo, J. Appl. Phys. 95(3), 816 (2004). https://doi.org/10.1063/1.1635990

    Article  ADS  Google Scholar 

  25. D. Nieto, J. Arines, G.M. ÖConnor, M.T. Flores-Arias, Appl. Opt. 54(29), 8596 (2015). https://doi.org/10.1364/AO.54.008596

    Article  ADS  Google Scholar 

  26. J. Furmanski, A. Rubenchik, M. Shirk, B. Stuart, J. Appl. Phys. 102(7), 073112 (2007). https://doi.org/10.1063/1.2794376

    Article  ADS  Google Scholar 

  27. G. Raciukaitis, M. Brikas, P. Gecys, B. Voisiat, M. Gedvilas et al., JLMN J. Laser Micro/Nanoeng. 4(3), 186 (2009). https://doi.org/10.2961/jlmn.2009.03.0008

    Article  Google Scholar 

  28. B. Neuenschwander, G.F. Bucher, C. Nussbaum, B. Joss, M. Muralt, U.W. Hunziker, P. Schuetz, in Laser Applications in Microelectronic and Optoelectronic Manufacturing XV, vol. 7584 (SPIE, 2010), pp. 99–112. https://doi.org/10.1117/12.846521

  29. S.M. Remund, M. Gafner, M.V. Chaja, A. Urniezius, S. Butkus, B. Neuenschwander, Procedia CIRP 94, 850 (2020). https://doi.org/10.1016/j.procir.2020.09.111

    Article  Google Scholar 

  30. P. Lickschat, D. Metzner, S. Weißmantel, J. Laser Appl. 33(4), 042002 (2021). https://doi.org/10.2351/7.0000437

    Article  ADS  Google Scholar 

  31. B. Jaeggi, B. Neuenschwander, U. Hunziker, J. Zuercher, T. Meier, M. Zimmermann, K.H. Selbmann, G. Hennig, in Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVII, vol. 8243 (International Society for Optics and Photonics, 2012), p. 82430K. https://doi.org/10.1117/12.909844

  32. B. Jaeggi, S. Remund, R. Streubel, B. Goekce, S. Barcikowski, B. Neuenschwander, J. Laser Micro/Nanoeng. 12(3) (2017). https://doi.org/10.2961/jlmn.2017.03.0016

  33. A. Žemaitis, M. Gaidys, P. Gečys, G. Račiukaitis, M. Gedvilas, Opt. Lasers Eng. 114, 83 (2019). https://doi.org/10.1016/j.optlaseng.2018.11.001

    Article  Google Scholar 

  34. G. Bonamis, K. Mishchick, E. Audouard, C. Hönninger, E. Mottay, J. Lopez, I. Manek-Hönninger, J. Laser Appl. 31(2), 022205 (2019). https://doi.org/10.2351/1.5096087

    Article  ADS  Google Scholar 

  35. A. Žemaitis, M. Gaidys, P. Gečys, M. Barkauskas, M. Gedvilas, Opt. Express 29(5), 7641 (2021). https://doi.org/10.1364/OE.417883

    Article  ADS  Google Scholar 

  36. D. Metzner, P. Lickschat, S. Weißmantel, J. Laser Appl. 33(1), 012057 (2021). https://doi.org/10.2351/7.0000352

    Article  ADS  Google Scholar 

  37. F. Caballero-Lucas, K. Obata, K. Sugioka, Int. J. Extreme Manuf. 4(1), 015103 (2022). https://doi.org/10.1088/2631-7990/ac466e

    Article  Google Scholar 

  38. S. Schwarz, S. Rung, C. Esen, R. Hellmann, Opt. Lett. 46(2), 282 (2021). https://doi.org/10.1364/OL.415959

    Article  ADS  Google Scholar 

  39. C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D.K. Kesim, Ö. Akçaalan, S. Yavaş, M.D. Aşık, B. Öktem, H. Hoogland et al., Nature 537(7618), 84 (2016). https://doi.org/10.1038/nature18619

    Article  ADS  Google Scholar 

  40. N. Hodgson, H. Allegre, A. Starodoumov, S. Bettencourt, J. Laser Micro/Nanoeng. 15(3) (2020). https://doi.org/10.2961/jlmn.2020.03.2014

  41. S. Hendow, H. Takahashi, M. Yamaguchi, J. Xu, in Laser-Based Micro-and Nanoprocessing XIV, vol. 11268 (International Society for Optics and Photonics, 2020), p. 1126809. https://doi.org/10.1117/12.2542582

  42. S. Karimelahi, L. Abolghasemi, P.R. Herman, Appl. Phys. A 114(1), 91 (2014). https://doi.org/10.1007/s00339-013-8155-8

    Article  ADS  Google Scholar 

  43. X. Jia, X. Zhao, Opt. Lett. 45(13), 3390 (2020). https://doi.org/10.1364/OL.396360

    Article  ADS  Google Scholar 

  44. W. Liu, S. Chin, Opt. Express 13(15), 5750 (2005). https://doi.org/10.1364/OPEX.13.005750

    Article  ADS  Google Scholar 

  45. W. Hu, Y.C. Shin, G. King, Appl. Phys. Lett. 99(23), 234104 (2011). https://doi.org/10.1063/1.3665631

    Article  ADS  Google Scholar 

  46. D. Metzner, P. Lickschat, S. Weißmantel, Appl. Surf. Sci. 531, 147270 (2020). https://doi.org/10.1016/j.apsusc.2020.147270

    Article  Google Scholar 

  47. A.C. Tien, S. Backus, H. Kapteyn, M. Murnane, G. Mourou, Phys. Rev. Lett. 82(19), 3883 (1999). https://doi.org/10.1103/PhysRevLett.82.3883

    Article  ADS  Google Scholar 

  48. N. Varkentina, N. Sanner, M. Lebugle, M. Sentis, O. Utéza, J. Appl. Phys. 114(17), 173105 (2013). https://doi.org/10.1063/1.4829015

    Article  ADS  Google Scholar 

  49. M. Sparks, D. Mills, R. Warren, T. Holstein, A. Maradudin, L. Sham, E. LohJr, D. King, Phys. Rev. B 24(6), 3519 (1981). https://doi.org/10.1103/PhysRevB.24.3519

    Article  ADS  Google Scholar 

  50. N. Bloembergen, IEEE J. Quantum Electron. 10(3), 375 (1974). https://doi.org/10.1109/JQE.1974.1068132

    Article  ADS  Google Scholar 

  51. T. Jia, R. Li, Z. Liu, Z. Xu, Appl. Phys. A 74(4), 503 (2002). https://doi.org/10.1007/s003390100903

    Article  ADS  Google Scholar 

  52. D. Metzner, P. Lickschat, S. Weißmantel, Appl. Phys. A 125(7), 1 (2019). https://doi.org/10.1007/s00339-019-2755-x

    Article  Google Scholar 

  53. B. Neuenschwander, B. Jaeggi, D.J. Foerster, T. Kramer, S. Remund, J. Laser Appl. 31(2), 022203 (2019). https://doi.org/10.2351/1.5096083

    Article  ADS  Google Scholar 

  54. D.J. Förster, S. Faas, S. Gröninger, F. Bauer, A. Michalowski, R. Weber, T. Graf, Appl. Surf. Sci. 440, 926 (2018). https://doi.org/10.1016/j.apsusc.2018.01.297

    Article  ADS  Google Scholar 

  55. A.A. Foumani, D.J. Förster, H. Ghorbanfekr, R. Weber, T. Graf, A.R. Niknam, Appl. Surf. Sci. 537, 147775 (2021). https://doi.org/10.1016/j.apsusc.2020.147775

    Article  Google Scholar 

  56. D. Arnold, E. Cartier, Phys. Rev. B 46(23), 15102 (1992). https://doi.org/10.1103/PhysRevB.46.15102

    Article  ADS  Google Scholar 

  57. B. Rethfeld, S. Linden, L. Englert, M. Wollenhaupt, L. Haag, C. Sarpe-Tudoran, T. Baumert, in High-Power Laser Ablation VII, vol. 7005 (SPIE, 2008), pp. 184–195. https://doi.org/10.1117/12.784630

  58. P. Audebert, P. Daguzan, A. DosSantos, J. Gauthier, J. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite et al., Phys. Rev. Lett. 73(14), 1990 (1994). https://doi.org/10.1103/PhysRevLett.73.1990

    Article  ADS  Google Scholar 

  59. G. Petite, P. Daguzan, S. Guizard, P. Martin, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 107(1–4), 97 (1996). https://doi.org/10.1016/0168-583X(95)00845-4

    Article  ADS  Google Scholar 

  60. I.M. Burakov, N.M. Bulgakova, R. Stoian, A. Rosenfeld, I.V. Hertel, Appl. Phys. A 81(8), 1639 (2005). https://doi.org/10.1007/s00339-005-3320-3

    Article  ADS  Google Scholar 

  61. J.M. Guay, A. CalàLesina, J. Baxter, G. Killaire, L. Ramunno, P. Berini, A. Weck, Adv. Opt. Mater. 6(17), 1800189 (2018). https://doi.org/10.1002/adom.201800189

    Article  Google Scholar 

  62. L.H. HolwayJr, D. Fradin, J. Appl. Phys. 46(1), 279 (1975). https://doi.org/10.1063/1.321378

    Article  ADS  Google Scholar 

  63. C. Yao, S. Xu, Y. Ye, Y. Jiang, R. Ding, W. Gao, X. Yuan, J. Alloys Compd. 722, 235 (2017). https://doi.org/10.1016/j.jallcom.2017.06.080

    Article  Google Scholar 

  64. M. Hagner, P. Sulzer, A. Liehl, M. Cimander, H. Kempf, A. Bitzer, A. Herter, A. Leitenstorfer, Opt. Express 29(21), 33632 (2021). https://doi.org/10.1364/OE.433703

    Article  ADS  Google Scholar 

  65. E. Stratakis, J. Bonse, J. Heitz, J. Siegel, G. Tsibidis, E. Skoulas, A. Papadopoulos, A. Mimidis, A.C. Joel, P. Comanns et al., Mater. Sci. Eng. R Rep. 141, 100562 (2020). https://doi.org/10.1016/j.mser.2020.100562

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support by the European Social Fund for Germany (ESF) in the funding project EilaSax no. 1003 395 06 and Qualitätsoptimierter Hochrateabtrag no. 1003 606 36. Furthermore, the authors acknowledge ACSYS Lasertechnik GmbH for providing the laser beam source and assisting with the experiments.

figure a

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Metzner.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metzner, D., Lickschat, P., Kreisel, C. et al. Study on laser ablation of glass using MHz-to-GHz burst pulses. Appl. Phys. A 128, 637 (2022). https://doi.org/10.1007/s00339-022-05776-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05776-7

Keywords

Navigation