Log in

Impedance and AC conductivity analysis of La-substituted 0.67BiFeO3–0.33BaTiO3 solid solution

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The solid solution of 0.67% Bi0.95La0.05FeO3–0.33% BaTiO3 (BLF–BT) was made by the sol–gel method. The sample's structural, microstructural, and electrical properties were investigated by XRD, SEM, and dielectric measurement, respectively. The BLF–BT shows insulating behavior as revealed from the complex impedance analysis and AC conductivity analysis. The sintered BLF–BT shows relative permittivity of the order of – 106 at high temperatures and follows the Maxwell–Wagner relaxation. Two charge carrier species were responsible for the relaxation process at low and high temperatures. The conduction in the sample is explained with the help of the jump relaxation model (JRM). Room temperature AC conductivity of the BLF–BT samples was observed to be – 10−7 S/cm, lower than that reported in literature. Impedance and modulus analysis was carried out to find out the conduction mechanism. The complex modulus analysis shows almost equal grain and grain boundary capacitances (variation in capacitance is of the order of – 2) in comparison to the resistances (variation in resistance is of the order of – 8). Further, leakage current mechanism is dominated by space charge-limited conduction (SCLC) in our BLF–BT ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N.A. Hill, Why are there so few magnetic ferroelectrics? J. Phys. Chem. B. 104, 6694 (2000)

    Google Scholar 

  2. V. Skumryev, V. Laukhin, I. Fina, X. Marti’, F. S’anchez, M. Gospodinov, J. Fontcuberta, Magnetization reversal by electric-field decoupling of magnetic and ferroelectric domain walls in multiferroic-based heterostructures phy. Rev. Lett. 106, 057206 (2011)

    ADS  Google Scholar 

  3. V. Laukhin, V. Skumryev, X. Marti’, D. Hrabovsky, F. S’anchez, M.V. Garcia-Cuenca, C. Ferrater, M. Varela, U. Luders, J.F. Bobo, J. Fontcuberta, Electric-field control of exchange bias in multiferroic epitaxial heterostructures phy. Rev. Lett. 97, 227201 (2006)

    ADS  Google Scholar 

  4. J.B. Neaton, C. Ederer, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, First-principles study of spontaneous polarization in multiferroic BiFeO3 Phys. Rev. B. 71, 014133 (2005)

    Google Scholar 

  5. F. Craciun, E. Dimitriu, M. Grigoras, N. Lupu, Multiferroic perovskite (Pb0.845Sm0.08Fe0.035)(Ti0.98Mn0.02)O3 with ferroelectric and weak ferromagnetic properties. Appl. Phy. Lett. 102, 242903 (2013)

    ADS  Google Scholar 

  6. M. Valant, A.-K. Axelsson, N. Alford, Peculiarities of a solid-state synthesis of multiferroic polycrystalline BiFeO3 chem. Mater. 19, 5431 (2007)

    Google Scholar 

  7. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.-M. Liu, Z.G. Liua, Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl. Phy. Lett. 84, 1731 (2004)

    ADS  Google Scholar 

  8. S.T. Zhang, M.H. Lu, D. Wu, Y.F. Chen, N.B. Ming, Larger polarization and weak ferromagnetism in quenched BiFeO3 ceramics with a distorted rhombohedral crystal structure. Appl. Phy. Lett. 87, 262907 (2005)

    ADS  Google Scholar 

  9. A.S. Priya, I.B.S. Banu, M. Chavali, Influence of (La, Cu) do** on the room temperature multiferroic properties of BiFeO3 ceramics. Arab. J. Sci. Eng. 40, 2079 (2015)

    Google Scholar 

  10. S. Fan, X. **e, F. Zhang, X. Guo, S. Yang, L. Zhang, Improved leakage and ferroelectric properties of Sr doped BiFe0.95Mn0.05O3 thin films. J. Mater. Sci. Mater. Electron. 27, 6854 (2016)

    Google Scholar 

  11. Md.R. Islam, M.S. Islam, M.A. Zubair, H.M. Usama, S. Azam, A. Sharif, Evidence of superparamagnetism and improved electrical properties in Ba and Ta co-doped BiFeO3 ceramics. J. Alloys. Compd. 735, 2584 (2018)

    Google Scholar 

  12. R. Ahmed, R. Si, S. Rehman, Y. Yu, Q. Li, C. Wang, High dielectric constant and low temperature ferroelectric-phase-transition in Ca, Pb co-doped BiFeO3. Results. Phys. 20, 103623 (2021)

    Google Scholar 

  13. L. Chen, Y. He, J. Zhang, Z. Mao, Z. Yu-Jun, X. Chen, The oxygen octahedral distortion induced magnetic enhancement in multiferroic Bi1-xYbxFe0.95Co0.05O3 powders. J Alloys. Compd. 604, 327 (2014)

    Google Scholar 

  14. L. Chen, L. Zheng, Y. He, J. Zhang, Z. Mao, X. Chen, The local distortion and electronic behavior in Mn doped BiFeO3. J. Alloys. Compd. 633, 216 (2015)

    Google Scholar 

  15. Z. Jian, N.P. Kumar, M. Zhong, H. Yemin, P.V. Reddy, Structural, magnetic and dielectric properties of Bi1-xLaxFeO3 (x = 0, 0.1, 0.15 and 0.2). J. Magnetism. Magn. Mater. 386, 92 (2015)

    ADS  Google Scholar 

  16. J. Chen, H. Dai, T. Li, D. Liu, R. Xue, H. **ang, Z. Chen, Role of Mn substitution in the multiferroic properties of BiFeO3 ceramics. J. Supercond. Nov. Magn. 28, 2751 (2015)

    Google Scholar 

  17. D.S. García-Zaleta, A.M. Torres-Huerta, M.A. Domínguez-Crespo, J.A. Matutes-Aquino, A.M. González, M.E. Villafuerte-Castrejón, Solid solutions of La-doped BiFeO3 obtained by the Pechini method with improvement in their properties. Ceram. Int. 40, 9225 (2014)

    Google Scholar 

  18. M.K. Yaakob, M.F.M. Taib, O.H. Hassan, M.Z.A. Yahya, Low-energy phases, electronic and optical properties of Bi1-xLaxFeO3 solid solution: Ab-initio LDA+U studies. Ceram. Int. 41, 10940 (2015)

    Google Scholar 

  19. J. Kolte, A.S. Daryapurkar, D.D. Gulwade, P. Gopalan, Microwave sintered Bi0.90La0.10Fe0.95Mn0.05O3 nanocrystalline ceramics: impedance and modulus spectroscopy. Ceram. Int. 42, 12914 (2016)

    Google Scholar 

  20. S.T. Dadami, S. Matteppanaver, I. Shivaraja, S. Rayaprol, S.K. Deshapande, M.V. Murugendrappa, B. Angadi, Structural, dielectric and conductivity studies of PbFe0.5Nb0.5O3—BiFeO3 multiferroic solid solution. J. Alloys. Compd. 724, 787 (2017)

    Google Scholar 

  21. L. Zia, G.H. Jaffari, N.A. Awan, J.U. Rahman, S. Lee, Electrical response of mixed phase (1–x)BiFeO3—xPbTiO3 solid solution: role of tetragonal phase and tetragonality. J. Alloys. Compd. 786, 98 (2019)

    Google Scholar 

  22. Y. Ma, X.M. Chen, Enhanced multiferroic characteristics in NaNbO3-modified BiFeO3 ceramics. J. App. Phys. 105, 054107 (2009)

    ADS  Google Scholar 

  23. P. Gupta, P.K. Mahapatra, R.N.P. Choudhary, Structural, dielectric, impedance, and modulus spectroscopy of BaSnO3-modified BiFeO3. J. Phy. Chem. Solids. 137, 109217 (2020)

    Google Scholar 

  24. S. Murakami, N.T.A.F. Ahmed, D. Wang, A. Feteira, D.C. Sinclaira, I.M. Reaney, Optimising dopants and properties in BiMeO3 (Me = Al, Ga, Sc, Y, Mg2/3Nb1/3, Zn2/3Nb1/3, Zn1/2Ti1/2) lead-free BaTiO3-BiFeO3 based ceramics for actuator applications. J. Euro. Ceram. Soc. 38, 4220 (2018)

    Google Scholar 

  25. S. Hajra, S. Sahoo, T. Mishra, P.K. Rout, R.N.P. Choudhary, Studies of dielectric and electrical transport characteristics of BaTiO3- BiFeO3-CaSnO3 ternary system. Proc Appl. Ceram. 12, 164 (2018)

    Google Scholar 

  26. H. Liu, High dielectric permittivity of BiFeO3–SrTiO3–CaTiO3 ternary solid solution ceramics. Ceram. Int. 46, 8255 (2020)

    Google Scholar 

  27. S. Shankar, I. Maurya, A. Raj, S. Singh, O.P. Thakur, M. Jayasimhadri, Dielectric and tunable ferroelectric properties in BiFeO3–BiCoO3–BaTiO3 ternary compound. Appl. Phys. A. 126, 686 (2020)

    ADS  Google Scholar 

  28. C. Li, T. Zheng, J. Wu, Competitive mechanism of temperature-dependent electrical properties in BiFeO3–BaTiO3 ferroelectrics controlled by domain evolution. Acta Mater. 206, 116601 (2021)

    Google Scholar 

  29. L.F. Zhu, B.P. Zhang, Z.C. Zhang, S. Li, L.J. Wang, L.J. Zheng, Piezoelectric, ferroelectric and ferromagnetic properties of (1–x) BiFeO3–xBaTiO3 lead-free ceramics near morphotropic phase boundary. J. Mater. Sci: Mater. Electro. 29, 2307 (2018)

    Google Scholar 

  30. M.H. Lee, D.J. Kim, H.I. Choi, M.H. Kim, T.K. Song, W.J. Kim, J.S. Park, D. Do, Low sintering temperature for lead-free BiFeO3-BaTiO3 ceramics with high piezoelectric performance. J. Am. Ceram. Soc. 102, 2666 (2018)

    Google Scholar 

  31. M. Habib, M.H. Lee, F. Akram, M.H. Kim, W.J. Kim, T.K. Song, Temperature-insensitive piezoelectric properties of lead-free BiFeO3-BaTiO3 ceramics with high curie temperature. J. Alloys. Compd. 851, 156788 (2021)

    Google Scholar 

  32. M.H. Lee, D.J. Kim, J.S. Park, S.W. Kim, T.K. Song, M.-H. Kim, W.-J. Kim, D. Do, I.L.-K. Jeong, High-Performance lead-free piezoceramics with high curie temperatures. Adv. Mater. 27, 6976 (2015)

    Google Scholar 

  33. S.O. Leontsevw, R.E. Eitel, Dielectric and piezoelectric properties in Mn-modified (1–x)BiFeO3–xBaTiO3 ceramics. J. Am. Ceram. Soc. 92, 2957 (2009)

    Google Scholar 

  34. H. Nam, S. Kim, T. Aizawa, I. Fujii, S. Ueno, S. Wada, Influence of quenching temperature on piezoelectric and ferroelectrics properties in BaTiO3-Bi(Mg1/2Ti1/2)O3-BiFeO3 ceramics. Ceram. Int. 44, S199 (2018)

    Google Scholar 

  35. X.H. Liu, Z. Xu, S.B. Qu, X.Y. Wei, J.L. Chen, Ferroelectric and ferromagnetic properties of Mn-doped 0.7BiFeO3–0.3BaTiO3 solid solution. Ceram. Int. 34, 797 (2008)

    Google Scholar 

  36. R. Rai, P. Duarte, I. Bdikin, M.A. Valente, P.A. Marques, J. Gracio, A.L. Kholkin, Local nanoelectromechanical properties of multiferroics Gd-doped BiFeO3–BaTiO3 solid solution. J. Nanosci. Nanotechnol. 12, 6639 (2012)

    Google Scholar 

  37. R. Rai, I. Bdikin, M.A. Valente, A.L. Kholkin, Ferroelectric and ferromagnetic properties of Gd-doped BiFeO3–BaTiO3 solid solution. Mat Chem. Phys. 119, 539 (2010)

    Google Scholar 

  38. M. Zhang, X. Zhang, X. Qi, Y. Li, L. Bao, Y. Gu, Effects of sintering temperature and composition on dielectric, ferroelectric, and magnetoelectric properties of BaTiO3–BiFeO3 solid solutions. Ceram. Int. 43, 16957 (2017)

    Google Scholar 

  39. M. Habib, M.H. Lee, D.J. Kim, F. Akram, H.I. Choi, M.H. Kim, W.J. Kim, T.K. Song, Phase diagram for Bi-site La-doped BiFeO3-BaTiO3 lead-free piezoelectric ceramics. J. Materiomics. 7, 40 (2021)

    Google Scholar 

  40. S.T. Zhang, Y. Zhang, M.H. Lu, C.L. Du, Y.F. Chen, Z.G. Liu, Y.Y. Zhu, N.B. Ming, Substitution-induced phase transition and enhanced multiferroic properties of Bi1−xLaxFeO3 ceramics. Appl. Phy. Lett. 88, 162901 (2006)

    ADS  Google Scholar 

  41. G.L. Yuan, S.W. Ora, J.M. Liu, Z.G. Liu, Structural transformation and ferroelectromagnetic behavior in single-phase Bi1−xNdxFeO3 multiferroic ceramics. Appl. Phy. Lett. 89, 052905 (2006)

    ADS  Google Scholar 

  42. F.Z. Qian, J.S. Jiang, D.M. Jiang, W.G. Zhang, J.H. Liu, Multiferroic properties of Bi0.8Dy0.2−xLaxFeO3 nanoparticles. J. Phys. D: Appl. Phys. 43, 025403 (2010)

    ADS  Google Scholar 

  43. J. Kolte, D. Gulwade, A. Daryapurkar, P. Gopalan, Microstructural characterization of ferroelectric bismuth ferrite (BiFeO3) ceramic by electron backscattered diffraction mat. Sci. Forum. 702, 1011 (2012)

    Google Scholar 

  44. A.B.A. Hammad, A.G. Darwish, A.M.E. Nahrawy, Identification of dielectric and magnetic properties of core shell ZnTiO3/CoFe2O4 nanocomposites. Appl. Phys. A. 126, 504 (2020)

    ADS  Google Scholar 

  45. A.M.E. Nahrawy, B.A. Hemdan, A.B.A. Hammad, Morphological, impedance and terahertz properties of zinc titanate/Fe3+ nanocrystalline for suppression of pseudomonas aeruginosa biofilm. Nano-Structures. Nano-Objects. 26, 100715 (2021)

    Google Scholar 

  46. A.M.E. Nahrawy, A.M. Bakr, B.A. Hemdan, A.B.A. Hammad, Identification of Fe3+ co-doped zinc titanate mesostructures using dielectric and antimicrobial activities. Int. J Env. Sci. Tech. (2020). https://doi.org/10.1007/s13762-020-02786-x

    Article  Google Scholar 

  47. R.C. Oliveira, E.A. Volnistem, E.A.C. Astrath, G.S. Dias, I.A. Santos, D. Garcia, J.A. Eiras, La doped BiFeO3 ceramics synthesized under extreme conditions: Enhanced magnetic and dielectric properties. Ceram. Int. 47, 20407 (2021)

    Google Scholar 

  48. A. Kumari, K. Kumari, A. Vij, P.A. Alvi, S. Kumar, Electrical and structural properties of La doped BiFeO3. AIP. Conf. Proc. 2220, 040032 (2020)

    Google Scholar 

  49. W. Li, O. Auciello, R.N. Premnath, B. Kabius, Giant dielectric constant dominated by Maxwell-Wagner relaxation in nanolaminates synthesized by atomic layer deposition. Appl. Phys. Lett. 96, 162907 (2010)

    ADS  Google Scholar 

  50. X.Q. Liu, S.Y. Wu, X.M. Chen, H.Y. Zhu, Giant dielectric response in two-dimensional charge-ordered nickelate ceramics. J. App. Phys. 104, 054114 (2008)

    ADS  Google Scholar 

  51. C.C. Wang, Y.M. Cui, G.L. **e, C.P. Chen, L.W. Zhang, Phase separation in La2CuO4+y ceramics probed by dielectric measurements. Phys. Rev. B. 72, 064513 (2005)

    ADS  Google Scholar 

  52. P.H. Salame, O. Prakash, A.R. Kulkarni, Exceptionally high dielectric constant in ceramic Pr2CuO4. J. Am. Ceram. Soc. 96, 2189 (2013)

    Google Scholar 

  53. T. Wang, J. Hu, H. Yang, L. **, X. Wei, C. Li, F. Yan, Y. Lin, Dielectric relaxation and Maxwell-Wagner interface polarization in Nb2O5 doped 0.65BiFeO3–0.35BaTiO3 ceramics. J. App. Phys. 121, 084103 (2017)

    ADS  Google Scholar 

  54. S. Shankar, M. Kumar, A.K. Ghosh, O.P. Thakur, Conduction mechanism and dielectric properties of BiFeO3–BaTiO3 solid solutions. J. Mater. Sci: Mater. Electron. 25, 4896 (2014)

    Google Scholar 

  55. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673 (1977)

    ADS  Google Scholar 

  56. J.W. Chert, J.C. Wang, Y.F. Chen, Study of dielectric relaxation behavior in Nd2CuO 4. Physica. C. 289, 131 (1997)

    ADS  Google Scholar 

  57. J.C. Chen, J.M. Wu, Dielectric properties and ac conductivities of dense single-phased BiFeO3 ceramics. Appl. Phy. Lett. 91, 182903 (2007)

    ADS  Google Scholar 

  58. J. Kolte, P.H. Salame, A.S. Daryapurkar, P. Gopalan, Impedance and AC conductivity study of nano crystalline, fine grained multiferroic bismuth ferrite (BiFeO3), synthesized by microwave sintering. AIP. Adv. 5, 097164 (2015)

    ADS  Google Scholar 

  59. P. Tirupathi, S.K. Mandal, A. Chandra, Effect of oxygen annealing on the multiferroic properties of Ca2+ doped BiFeO3 nanoceramics. J. App. Phys. 116, 244105 (2014)

    ADS  Google Scholar 

  60. S. Hunpratub, P. Thongbai, T. Yamwong, R. Yimnirun, S. Maensiri, Dielectric relaxations and dielectric response in multiferroic BiFeO3 ceramics. Appl. Phy. Lett. 94, 062904 (2009)

    ADS  Google Scholar 

  61. K. Funke, Jump relaxation in solid electrolytes. Solid. St. Chem. 22, 111 (1993)

    Google Scholar 

  62. K.K. Bharathi, G. Markandeyulu, C.V. Ramana, Impedance spectroscopic characterization of Sm and Ho doped Ni ferrites. J. Electrochem. Soc. 158, G71 (2011)

    Google Scholar 

  63. I.M. Hodge, K.L. Ngai, C.T. Moynihan, Comments on the electric modulus function. J. Non-Crystalline. Solids. 351, 104 (2005)

    ADS  Google Scholar 

  64. I.M. Hodge, M.D. Ingram, A.R. West, A new method for analysing the a.c. behaviour of polycrystalline solid electrolytes. Electroanal. Chem. Interfacial. Electrochem. 58, 429 (1975)

    Google Scholar 

  65. P. Pandit, S. Satapathy, P.K. Gupta, Effect of La substitution on conductivity and dielectric properties of Bi1-xLaxFeO3 ceramics: an impedance spectroscopy analysis. Physica. B. 406, 2669 (2011)

    ADS  Google Scholar 

  66. M. Amin, H.M. Rafique, G.M. Mustafa, A. Mahmood, S.M. Ramay, S. Atiq, S.M. Ali, Effect of La/Cr co-do** on dielectric dispersion of phase pure BiFeO3 nanoparticles for high frequency applications. J. Mat. Res. Tech. 13, 1534 (2021)

    Google Scholar 

  67. S. Gupta, M. Tomar, V. Gupta, Enhanced magnetic and electric properties of nanocrystalline Ce modified BFO thin films. Ferroelectrics 470, 272 (2014)

    Google Scholar 

  68. W. Mao, X. Wang, L. Chu, Y. Zhu, Q. Wang, J. Zhang, J. Yang, X. Li, W. Huang, Simultaneous enhancement of magnetic and ferroelectric properties in Dy and Cr co-doped BiFeO3 nanoparticles. Phys. Chem. Chem. Phys. 18, 6399 (2016)

    Google Scholar 

  69. S. Sharma, M.P. Cruz, J.M. Siqueiros, O. Raymond-Herrera, V.E. Alvarez, R.K. Dwivedi, Investigation of electrical, magneto-dielectric and transport properties of multiferroic (1–x) BiFeO3—(x) BaSr0.7Ti0.3O3 solid solutions. J. Mater. Sci: Mater. Electro. 30, 7447 (2019)

    Google Scholar 

  70. H. Borkar, M. Tomar, V. Gupta, J.F. Scott, A. Kumar, Anomalous change in leakage and displacement currents after electrical poling on lead-free ferroelectric ceramics. Appl. Phy. Lett. 107, 122904 (2015)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Department of MEMS and IRCC at IIT Bombay for providing broadband dielectric measurement facility.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: JK. Methodology: PPSB and JK. Formal analysis and investigation: PP SB and JK. Writing—review and editing: PPSB and JK.

Corresponding author

Correspondence to Jayant Kolte.

Ethics declarations

Conflict of interest

NA.

Ethical approval

NA.

Research involving human participants and/or animals

NA.

Informed consent

NA.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhadauria, P.P.S., Kolte, J. Impedance and AC conductivity analysis of La-substituted 0.67BiFeO3–0.33BaTiO3 solid solution. Appl. Phys. A 128, 465 (2022). https://doi.org/10.1007/s00339-022-05600-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05600-2

Keywords

Navigation