Log in

Interplay between cation distribution and magnetic properties for CoAlxFe2−xO4 0.0 ≤ x ≤ 0.7 nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The relationship between cationic distribution, bond angle, bond length with magnetic properties of CoFe2−xAlxO4 (0 ≤ x ≤ 1) nano-ferrite is demonstrated. The magnetic properties of spinel nano-ferrites have been examined using a vibrating sample magnetometer. The crystal structure was calculated using an X-ray diffractometer and ratified via high-resolution transmission electron microscopy. Substitution of Al content (x) in cobalt ferrite caused a reduction in particle size, lattice parameter, and magnetic properties. The saturation magnetization changes with increasing Al content due to the effect of cation distribution in tetrahedral and octahedral sites and due to a change in ferrimagnetic structure. The existence of the strong dipolar interactions and/or exchange coupling is established via the appearance of double peaks in switching field distribution. The obtained data ratify that the substitution of Al content in the cobalt system is a powerful tool for tuning the magnetic properties of the investigated samples. This substitution decreases the magnetic energy loss and the switching field distribution. Consequently, the studied samples are recommended to be used in transformer cores and high-density recording. The strong correlation between cation distribution, bond angle, bond length, and the magnetic properties of the studied samples is the main advantages of the present work as compared to the literature reported on Co-Al nano-ferrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Purnama, A. Khoiriah, S. Suhatyana, Structural and magnetic properties of aluminum-substituted cobalt ferrite nanoparticles synthesized by the Co-precipitation Route. J. Magn. 23(1), 106–111 (2018)

    Google Scholar 

  2. Z. Zlozarevic, C. Jovolevic, A. Milutnovic, M.J. Romecvic, Z. Romcevice, Preparation and characterization of nanoferrite. Acta Phys. Pol. A 21, 682 (2012)

    Google Scholar 

  3. D.-M. Wei, J.-B. Li, Y.-J. Chen, Cation distribution and infrared properties of Nix Mn1-xFe2O4 ferrites. J. Mater. Sci. 36, 5115–5118 (2001)

    ADS  Google Scholar 

  4. E.E. Ateia, M.A. Ateia, M.M. Arman, Under publication. J. Mater. Sci. Mater. Electron. (2021). https://doi.org/10.21203/rs.3.rs-312141/v1

    Article  Google Scholar 

  5. J. Hua, Y. Liu, L.W.M. Feng, J. Zhao, H. Li, Mossbauer studies on Mn substituted CoFe2O4/Sio2 nanocomposite synthesized by sol-gel method. J. Magn Magn Mater 402, 166–171 (2016)

    ADS  Google Scholar 

  6. P.S. Aghav, V.N. Dhage, M.L. Mane, D.R. Shengule, R.G. Dorik, K.M. Jadhav, effect of aluminium substitution on the structural and magnetic properties of cobalt ferrite synthesized by sol-gel auto combustion process. Physica B 406, 4350–4354 (2011)

    ADS  Google Scholar 

  7. K. Venkateson, D.R. Babu, M.P.K. Bai, R. Supriya, R. Vidya, S. Medeswaran, P. Anandan, M. Arivanandhan, Y. Hoyakawa, Structural and magnetic properties of cobalt doped iron oxide nanoparticles prepared by solution combustion method for biomedical application. Int. J. Nanomed. 10(Suppl 1), 189–198 (2015)

    Google Scholar 

  8. E.E. Ateia, A.A. El-Bassuony, G. Abdelatif, F.S. Soliman, J. Mater. Sci. Mater. Electron. 28, 241–249 (2017)

    Google Scholar 

  9. E.E. Ateia, R. Ramadan, A.S. Shafaay, Appl. Phys. A 126, 222 (2020)

    ADS  Google Scholar 

  10. S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, Precipitation, synthesis, characterization, morphological, control and photo catalyst application of ZnWO4. J. Electron Mater. 45, 3612 (2016)

    ADS  Google Scholar 

  11. D. Erdem, N.S. Bingham, F.J. Heiligtag, N. Pilet, P. Warinicke, L.J. Heyderman, M. Niederberger, CoFe2O4 and CoFe2O4-SiO2 nanoparticle thin films with perpendicular magnetic anisotropy for magnetic and magneto-optical applications. Adv. Funct. Mater. 26(12), 1954–1963 (2016)

    Google Scholar 

  12. Z. Huai-Wu, L. Jie, S. Hua, Z. Ting-Chuan, L. Yang, Z.Z. Liang, Development and application of ferrite materials for law temperature–Co–fired ceramic technology. Chin. Phys. B 22(11), 117504 (2013)

    ADS  Google Scholar 

  13. R.K. Kotnala, J. Shah, Handbook of Magnetic Materials (Elsevier, 2015), pp. 291–379

    Google Scholar 

  14. P.N. Anantharamaiah, P.A. Joy, Mater. Sci. 50, 6510 (2015)

    ADS  Google Scholar 

  15. B.K. Kuanar, S.R. Mishra, L. Wang, D. Delconte, D. Neupane, V. Veerakumar, Z. Celinski, Mat. Res. Bull. 76, 22 (2016)

    Google Scholar 

  16. I.C. Nlbdim, N. Ranvah, Y. Melikhuve, P.I. Williams, J.E. Snyder, A.-J. Moses, D.C. Jiles, J. Appl. Phys. 107, 09A936 (2010)

    Google Scholar 

  17. L. Kumar, M. Kar, J. Magn. Magn. Mater. 323, 2042 (2011)

    ADS  Google Scholar 

  18. E.E. Ateia, F.S. Soliman, Appl. Phys. A 123, 312 (2017)

    ADS  Google Scholar 

  19. F. Muthafar, A.L. Hilli, S. Li, S. Kassim, Mater. Chem. Phys. 128, 127–132 (2011)

    Google Scholar 

  20. K. Ramakrishna, K.V. Kumar, C. Ravinderguptha, D. Rvinder, Adv. Mater. Phys. Chem. 2, 149–154 (2012)

    Google Scholar 

  21. D.R. Mane, U.N. Devatwal, K.M. Jadhav, Mater. Lett. 44, 91 (2000)

    Google Scholar 

  22. N. Hanh, O.K. Quy, N.P. Thuy, L.D. Tung, L. Spinu, Phys. B 327, 382 (2003)

    ADS  Google Scholar 

  23. S. Singhal, R. Sharma, T. Namgyal, S. Jauhar, S. Bhukal, J. Kaur, Ceram. Int. 38, 2773 (2012)

    Google Scholar 

  24. R.D. Shannon, Acta Cryst. A 32, 751 (1976)

    Google Scholar 

  25. C.C. Wu, S. Kumarakrishan, T.O. Mosan, J. Solid State Chem. 37, 144 (1981)

    ADS  Google Scholar 

  26. Q. Lin, Z. Guo, F. Yang, Effect of Al+3 substitution on structural and magnetic behavior of CoFe2O4 ferrite nanomaterials. Nanomaterias (Basel) 8(10), 750 (2018)

    Google Scholar 

  27. N.M. Deraz, A. Alarifi, Processing and evaluation of alumina doped nickel ferrite nanoparticle. Int. J. Electrochem. Sci. 7, 4585–4595 (2012)

    Google Scholar 

  28. M. Khalid, A.D. Chandio et al., Aluminum substitution in Ni-Co based spinel ferrite nanoparticles by sol-gel auto combustion method. J. Elec. Mater. 50(6), 3302–3311 (2021)

    ADS  Google Scholar 

  29. S.U. Bhasker, M.R. Reddy, Effect of chromium substitution on structural, magnetic, and electrical properties of magneto-ceramic cobalt ferrite nano-particles. J. Sol-Gel. Sci. Technol. 73(2), 396–402 (2015)

    Google Scholar 

  30. S.N. Kane, M. Satalkar, Correlation between magnetic properties and cationic distribution of Zn0.85−xNixMg0.05Cu0.1Fe2O4 nanospinel ferrite: effect of Ni do**. J. Mater. Sci. 52(6), 3467–3477 (2017)

    ADS  Google Scholar 

  31. K.E. Sickafus, J.M. Wills, N.W. Grimes, Structure of spinel. J. Am. Ceram. Soc. 82, 3279–3292 (1999)

    Google Scholar 

  32. E.E. Ateia, M.K. Abdelmaksoud, H. Ismail, J. Mater. Sci. Mater. Electron. 32, 4480–4492 (2021)

    Google Scholar 

  33. R.S. Alam, M. Moradi, M. Rostami, H. Nikmanesh, R. Moayedi, Y. Bai, Structural, magnetic and microwave absorption properties doped Ba-hexaferrite nanoparticles synthesized by coprecipitation method. J. Magn. Magn. Mater. 381, 1–9 (2015)

    ADS  Google Scholar 

  34. Q. Lin, Y. He, Xu. Jianmei, J. Lin, Z. Guo, F. Yaung, Effect of Al+3 substitution on structural and magnetic behavior of CoFe2O4 ferrite nanomaterials. Nanomaterials 8, 750 (2018)

    Google Scholar 

  35. S. Gowreesan, A.R. Kumar, Effect of Mg2+ ion substitution on structural and electric studies of spinel structure of Co1−xMgxFe2O4. J. Mater. Sci. Mater. Electron. 28(6), 4553–4564 (2017)

    Google Scholar 

  36. M. Lkshmi, K.V. Kumar, K. Thyagarajan, Structural and magnetic properties of Cr-Co nano ferrite particles. Adv. Nanopart. 5(1), 103–113 (2016)

    Google Scholar 

  37. E.E. Ateia, A.T. Mohamed, M. Morsy, Chapter 5 in Metal Oxide-Carbon Hybrid Materials. Elsevier, Included in the series entitled METAL OXIDES Under publication 2021

  38. A. Yaseen, T.H. Mubarak, S.M.A. Ridha, An effect of calcination temperatures on the charecteristics of the MgFe2O4 nanoferrite prepared using auto combustion method. J. Bio. Chem. Tech. 4, 9–14 (2018)

    Google Scholar 

  39. M.A. Gabal, A.M. Abdel-Daiem, Y.M.A. Angari, I.M. Ismail, Influence of Al substitution on structural, electrical and magnetic properties of Mn-Zn ferrites nano powder prepared via the sol-gel auto-combustion method. Polyhedron 57, 105–111 (2013)

    Google Scholar 

  40. E.E. Ateia, M. Farag, Synthesis of cobalt/calcium nanoferrites with controllable physical properties. Appl. Phys. A 125, 324 (2019)

    ADS  Google Scholar 

  41. M.A. Almessiere, Y. Slimani, A. Baykal, Ceram. Int. 44, 9000 (2018)

    Google Scholar 

  42. C. Singh, E.E. Ateia, S.B. Naarang, M. Farag, J. Singh, D.E.E. Nashar, Ceram. Int. 47(5), 7285–7290 (2021)

    Google Scholar 

  43. E.C. Stoner, E.P. Wohlforth, Philos. Trans. R Soc. Land. A 240(826), 599–642 (1948)

    ADS  Google Scholar 

  44. Q. Li, C.W. Kartikowati, S. Horie, T. Ogi, T. Iwaki, K. Okuyama, Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Sci. Rep. 7, 9894 (2017)

    ADS  Google Scholar 

  45. A.T. Raghavender, R.G. Kulkarni, K.M. Jadhav, Magnetic properties of mixed cobalt aluminum ferrite nanoparticles. Chin. J. Phys. 48(4), 512–522 (2010)

    Google Scholar 

  46. H.M. Zaki, S.H. Al-Heniti, A. Hashhash, Effect of Al3+ ion addition on the magnetic properties of cobalt ferrite at moderate and low temperatures. J. Magn. Magn. Mater. 401, 1027–1032 (2016)

    ADS  Google Scholar 

  47. Y. Yafet, C. Kittel, Antiferromagnetic arrangements in ferrites. Phys. Rev. 87, 290–294 (1952)

    ADS  Google Scholar 

  48. R. Topkaya, A. Baykal, A. Demir, Yafet-Kittel-type magnetic order in Zn-substituted cobalt ferrite nanoparticls with uniaxial anisotropy. J. Nanopart. Res. 15, 1359 (2013)

    ADS  Google Scholar 

  49. N.S.S. Murthy, M.G. Natera, S.I. Youssef, R.J. Begum, C.M. Srivastava, Yafet-Kittel angles in zinc-nickel ferrite. Phys. Rev. 181(2), 969–977 (1969)

    ADS  Google Scholar 

  50. E.E. Ateia, A.T. Mohamed, K. Elsayed, J. Magn. Magn. Mater. 452, 169–178 (2018)

    ADS  Google Scholar 

  51. M. Ajmal, A. Maqsood, Structural, electrical and magnetic properties of Cu1-xZnxFe2O4 ferrite (0 ≤ x≤ 1). J. Alloys Compd. 460(1–2), 54–59 (2008)

    Google Scholar 

  52. S.A. Mazen, N.I. Abu-Elsaad, Structural and some magnetic properties of manganese-substituted lithium ferrites. J. Magn. Magn. Mater. 324(20), 3366–3373 (2012)

    ADS  Google Scholar 

  53. S. Raghuvanshi, F. Mazaleyrat, S.N. Kane, Mg1−xZnxFe2O4 nanoparticles: interplay between cation distribution and magnetic properties. AIP Adv. 8, 047804 (2018)

    ADS  Google Scholar 

  54. T.R. Tatarchuk, M. Bououdina, N.D. Paliychuk, Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites. J. Alloys Compd. 694(15), 777–791 (2016). https://doi.org/10.1016/j.jallcom.10.067

    Article  Google Scholar 

  55. K.V. Zipare, S.S. Bandgar, G.S. Shahane, Effect of Dy-substitution on structural and magnetic properties of Mn-Zn ferrite nanoparticles. J. Rare Earths 36(1), 86–94 (2017)

    Google Scholar 

  56. T. Hauet, L. Piraux, S.K. Srivastava, V.A. Antohe, D. Lacour, M. Hehn, F. Montaigne, J. Schwenk, M.A. Marioni, H.J. Hug, Phys. Rev. B 89, 174421 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

I would like to express my gratitude and appreciation to Asmaa A. H. El-Bassuony, and Dalia. N. Ghaffar, physics department, Faculty of Science, Cairo University, for their moral support.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Ebtesam E. Ateia contributed to conceptualization, methodology, validation, formal analysis, investigation, resources, data curation, writing–original draft preparation, writing–review & editing, visualization, and supervision. K. K. Meleka contributed to material preparation, data collection and analysis, optimum selection of material parameters, methodology, validation and visualization, review and editing. F. Z. Ghobrial contributed to conceptualization, investigation, and review and editing.

Corresponding author

Correspondence to Ebtesam E. Ateia.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ateia, E.E., Meleka, K.K. & Ghobrial, F.Z. Interplay between cation distribution and magnetic properties for CoAlxFe2−xO4 0.0 ≤ x ≤ 0.7 nanoparticles. Appl. Phys. A 127, 831 (2021). https://doi.org/10.1007/s00339-021-04974-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04974-z

Keywords

Navigation