Log in

Effective role of minor silicon addition on crystallization kinetics of Cu50Zr43Al7 bulk metallic glass

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The Si addition has a great impact on the glass forming ability of Cu50Zr43Al7 bulk metallic glass (BMG). To investigate the effective role of Si do** on the crystallization behavior of the BMGs, crystallization transformation kinetics of Cu50Zr43Al7 and (Cu50Zr43Al7)99Si1 BMGs were explored at non-isothermal and isothermal conditions by differential scanning calorimetry (DSC) experiments. The Si do** enhances the activation energy of crystallization transformation (resistance against crystallization) under both thermal circumstances. Avrami exponents were obtained by employing the Johnson–Mehl–Avrami–Kolmogorov (JMAK) model. In the isothermal regime, Avrami exponents in both BMGs were 2.2, which reveals that the dominant mechanism of crystallization is the three-dimensional growth with a decreasing nucleation rate of crystals. The time–temperature–transformation or TTT diagram displayed that minor alloying of Si displaced the crystallization transformation to elevated temperatures and longer incubation times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Telford, The case for bulk metallic glass. Mater. Today 7(3), 36–43 (2004)

    Google Scholar 

  2. A.A.A. Aliyu, A.M. Abdul-Rani, T.L. Ginta, T.V.V.L.N. Rao, E. Axinte, S. Ali, M. Ramli, Hydroxyapatite electro discharge coating of Zr-based bulk metallic glass for potential orthopedic application. Key Eng. Mater. 796, 123–128  (2019)

    Google Scholar 

  3. A. Inoue, F. Kong, Y. Han, S. Zhu, A. Churyumov, E. Shalaan, F. Al-Marzouki, Development and application of Fe-based soft magnetic bulk metallic glassy inductors. J. Alloy. Compd. 731, 1303–1309 (2018)

    Google Scholar 

  4. L. Liang, X. Hui, C. Zhang, G. Chen, A Dy-based bulk metallic glass with high thermal stability and excellent magnetocaloric properties. J. Alloy. Compd. 463(1–2), 30–33 (2008)

    Google Scholar 

  5. Q. Zhou, Y. Ren, Y. Du, W. Han, D. Hua, H. Zhai, P. Huang, F. Wang, H. Wang, Identifying the significance of Sn addition on the tribological performance of Ti-based bulk metallic glass composites. J. Alloy. Compd. 780, 671–679 (2019)

    Google Scholar 

  6. W. Zhang, H. Guo, M. Chen, Y. Saotome, C. Qin, A. Inoue, New Au-based bulk glassy alloys with ultralow glass transition temperature. Scripta Mater. 61(7), 744–747 (2009)

    Google Scholar 

  7. J. Wu, Y. Pan, X. Li, X. Wang, Design Microstructure evolution and mechanical properties of Nb-alloyed Cu-based bulk metallic glasses and composites. Materials 75, 32–39 (2015)

    Google Scholar 

  8. C.-L. Dai, H. Guo, Y. Shen, Y. Li, E. Ma, J. Xu, A new centimeter–diameter Cu-based bulk metallic glass. Scripta Mater 54(7), 1403–1408 (2006)

    Google Scholar 

  9. E. Pekarskaya, J.F. Löffler, W. Johnson, Microstructural studies of crystallization of a Zr-based bulk metallic glass. Acta Mater 51(14), 4045–4057 (2003)

    ADS  Google Scholar 

  10. W.H. Wang, Z. Bian, P. Wen, Y. Zhang, M. Pan, D. Zhao, Role of addition in formation and properties of Zr-based bulk metallic glasses. Intermetallics 10(11–12), 1249–1257 (2002)

    Google Scholar 

  11. Q. Zhang, W.A. Zhang, Inoue New Cu–Zr-based bulk metallic glasses with large diameters of up to 15 cm. Scripta Mater. 55(8), 711–713 (2006)

    Google Scholar 

  12. S. Pauly, G. Liu, G. Wang, U. Kühn, N. Mattern, J. Eckert, Microstructural heterogeneities governing the deformation of Cu47. 5Zr47. 5Al5 bulk metallic glass composites. Acta Mater. 57(18), 5445–5453 (2009)

    ADS  Google Scholar 

  13. P. Yu, H. Bai, W. Wang, Superior glass-forming ability of CuZr alloys from minor additions. J Mater Res 21(7), 1674–1679 (2006)

    ADS  Google Scholar 

  14. R. Rashidi, M. Malekan, Y. Hamishebahar, Serration dynamics in the presence of chemical heterogeneities for a Cu-Zr based bulk metallic glass. J Alloy Compd 775, 298–303 (2019)

    Google Scholar 

  15. T. Zhang, H. Men, S. Pang, J. Fu, C. Ma, A. Inoue, Effects of a minor addition of Si and/or Sn on formation and mechanical properties of Cu–Zr–Ti bulk metallic glass. Mater Sci Eng A 449, 295–298 (2007)

    Google Scholar 

  16. H. Fu, H. Zhang, H. Wang, Z. Hu, Cu-based bulk amorphous alloy with larger glass-forming ability and supercooled liquid region. J Alloy Compd 458(1), 390–393 (2008)

    Google Scholar 

  17. H. Fu, H. Wang, H. Zhang, Z. Hu, The effect of Gd addition on the glass-forming ability of Cu–Zr–Al alloy. Scripta Mater 55(2), 147–150 (2006)

    Google Scholar 

  18. Y. Kim, J. Lee, P. Cha, J. Ahn, E. Fleury, Enhanced glass forming ability and mechanical properties of new Cu-based bulk metallic glasses. Mater Sci Eng A 437(2), 248–253 (2006)

    Google Scholar 

  19. Z. **e, Y. Zhang, Y. Yang, X. Chen, P. Tao, Effects of rare-earth elements on the glass-forming ability and mechanical properties of Cu46Zr47−x Al7M x (M = Ce, Pr, Tb, and Gd) bulk metallic glasses. Rare Met. 29(5), 444–450 (2010)

    Google Scholar 

  20. L. Deng, B. Zhou, H. Yang, X. Jiang, B. Jiang, X. Zhang, Roles of minor rare-earth elements addition in formation and properties of Cu–Zr–Al bulk metallic glasses. J Alloy Compd 632, 429–434 (2015)

    Google Scholar 

  21. B. Escher, U. Kühn, J. Eckert, C. Rentenberger, S. Pauly, Influence of Ag and Co additions on glass-forming ability, thermal and mechanical properties of Cu–Zr–Al bulk metallic glasses. Mater Sci Eng A 673, 90–98 (2016)

    Google Scholar 

  22. J. Cui, J.S. Li, J. Wang, H.C. Kou, J.C. Qiao, S. Gravier, J.J. Blandin, Crystallization kinetics of Cu38Zr46Ag8Al8 bulk metallic glass in different heating conditions. J Non-Cryst Solids 404, 7–12 (2014)

    ADS  Google Scholar 

  23. R. Rashidi, M. Malekan, R. Gholamipour, Microstructure and mechanical properties of a Cu-Zr based bulk metallic glass containing atomic scale chemical heterogeneities. Mater Sci Eng A 729, 433–438 (2018)

    Google Scholar 

  24. J. Wu, Z. Peng, Effects of microadditions on glass transition and hardness of Cu-based bulk metallic glasses. Appl Phys A 124(9), 632 (2018)

    ADS  Google Scholar 

  25. J. Wu, Y. Pan, X. Li, X. Wang, Microstructure evolution and mechanical properties of Nb-alloyed Cu-based bulk metallic glasses and composites. Mater Des 75, 32–39 (2015)

    Google Scholar 

  26. M.W. Lee, H.J. Shin, S.H. Hong, J.T. Kim, H. Choi-Yim, Y. Seo, W.H. Lee, P. Yu, M. Qian, J.K. Lee, K.B. Kim, Thermal and mechanical properties of Cu60−xZr25Ti15Nix bulk metallic glasses with x=0, 1, 3, 5, 7, 9 and 11 at.%. Metals Mater Int 20(1), 1–5 (2014)

    Google Scholar 

  27. M. Malekan, S.G. Shabestari, W. Zhang, S.H. Seyedein, R. Gholamipour, A. Makino, A. Inoue, Effect of Si addition on glass-forming ability and mechanical properties of Cu–Zr–Al bulk metallic glass. Mater Sci Eng A 527(27–28), 7192–7196 (2010)

    Google Scholar 

  28. R. Rashidi, M. Malekan, R. Gholamipour, Crystallization kinetics of Cu47Zr47Al6 and (Cu47Zr47Al6)99Sn1 bulk metallic glasses. J Non-Cryst Solids 498, 272–280 (2018)

    ADS  Google Scholar 

  29. F. Sıkan, G. Polat, I. Kalay, Y.E. Kalay, Effect of Sm on Crystallization Kinetics of Cu-Zr-Al Metallic Glasses. Thermochim Acta 683, 178439 (2020)

    Google Scholar 

  30. P. Gong, S. Zhao, X. Wang, K. Yao, Non-isothermal crystallization kinetics and glass-forming ability of Ti41Zr25Be28Fe6 bulk metallic glass investigated by differential scanning calorimetry. Appl Phys A 120(1), 145–153 (2015)

    ADS  Google Scholar 

  31. P. Rezaei-Shahreza, A. Seifoddini, S. Hasani, Z. Jaafari, A. Śliwa, M. Nabiałek, Isokinetic analysis of Fe41Co7Cr15Mo14Y2C15B6 bulk metallic glass effect of minor copper addition. Materials 13(17), 3704 (2020)

    ADS  Google Scholar 

  32. S. Haratian, M. Haddad-Sabzevar, Thermal stability and non-isothermal crystallization kinetics of Ti41.5Cu42.5Ni7.5Zr2.5Hf5Si1 bulk metallic glass. J Non-Crystalline Sol (2015). https://doi.org/10.1016/j.jnoncrysol.2015.09.009

    Article  Google Scholar 

  33. S. Sohrabi, M.C. Ri, H.Y. Jiang, L. Gu, P. Wen, Y.H. Sun, W.H. Wang, Prominent role of chemical heterogeneity on cryogenic rejuvenation and thermomechanical properties of La–Al–Ni metallic glass. Intermetallics 111, 106497 (2019)

    Google Scholar 

  34. R. Adelfar, H. Mirzadeh, A. Ataie, M. Malekan, Crystallization kinetics of mechanically alloyed amorphous Fe-Ti alloys during annealing. Adv Powder Technol 31(8), 3215–3221 (2020)

    Google Scholar 

  35. O. Lozada-Flores, I.A. Figueroa, G. Gonzalez, A.E. Salas-Reyes, Influence of minor additions of Si on the crystallization kinetics of Cu 55 Hf 45 metallic glasses. Thermochim Acta 662, 116–125 (2018)

    Google Scholar 

  36. R.A. Susilo, D. Triyono, Thermal stability and crystallization kinetics of Fe73Al5Ga2P11-xC5B4Six (x = 1, 3) metallic glasses. AIP Conf. Proc. 1862, 030032 (2017)

    Google Scholar 

  37. A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans 46(12), 2817–2829 (2005)

    Google Scholar 

  38. H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal Chem 29(11), 1702–1706 (1957)

    Google Scholar 

  39. H.-R. Wang, Y.-L. Gao, Y.-F. Ye, G.-H. Min, Y. Chen, X.-Y. Teng, Crystallization kinetics of an amorphous Zr–Cu–Ni alloy: calculation of the activation energy. J Alloy Compd 353(1–2), 200–206 (2003)

    Google Scholar 

  40. T. Ozawa, Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Calorim 2(3), 301–324 (1970)

    Google Scholar 

  41. J. Augis, J. Bennett, Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal Calorim 13(2), 283–292 (1978)

    Google Scholar 

  42. W.A. Johnson, R.F. Mehl, Reaction kinetics in processes of nucleation and growth. Trans. Amer Inst Min Metall Eng (AIME) 135, 416–458 (1939)

    Google Scholar 

  43. M. Avrami, Granulation, phase change, and microstructure kinetics of phase change III. J Chem Phys 9(2), 177–184 (1941)

    ADS  Google Scholar 

  44. W.A. Johnson, R.F. Mehl, Reaction kinetics of nucleation and growth. Trans Am Inst Min Metall Eng 135, 416–442 (1939)

    Google Scholar 

  45. S.H. Kim, S.H. Ahn, T. Hirai, Crystallization kinetics and nucleation activity of silica nanoparticle-filled poly(ethylene 2,6-naphthalate). Polymer 44(19), 5625–5634 (2003)

    Google Scholar 

  46. Z. Jaafari, A. Seifoddini, S. Hasani, P. Rezaei-Shahreza, Kinetic analysis of crystallization process in [(Fe0.9Ni0.1)77Mo5P9C7.5B1.5]100−xCux (x = 0.1 at.%) BMG. J Therm Anal Calorim 134(3), 1565–1574 (2018)

    Google Scholar 

  47. T. Xu, Z. Jian, F. Chang, L. Zhuo, T. Zhang, Isothermal crystallization kinetics of Fe75Cr5P9B4C7 metallic glass with cost-effectiveness and desirable merits. J Therm Anal Calorim 133(3), 1309–1315 (2018)

    Google Scholar 

  48. G. **e, D.V. Louzguine-Luzgin, Q. Zhang, W. Zhang, A. Inoue, Structure and crystallization kinetics of a Cu50Zr45Ti5 glassy alloy. J Alloy Compd 483(1–2), 24–27 (2009)

    Google Scholar 

  49. J.C. Qiao, J.M. Pelletier, Crystallization kinetics in Cu46Zr45Al7Y2 bulk metallic glass by differential scanning calorimetry (DSC). J Non-Cryst Solids 357(14), 2590–2594 (2011)

    ADS  Google Scholar 

  50. D.V. Louzguine-Luzgin, G. **e, W. Zhang, A. Inoue, Influence of Al and Ag on the devitrification behavior of a Cu-Zr glassy alloy. Mater Trans (2007). https://doi.org/10.2320/matertrans.MF200633

    Article  Google Scholar 

  51. J. Pries, S. Wei, M. Wuttig, P. Lucas, Switching between crystallization from the glassy and the undercooled liquid phase in phase change material Ge2 Sb2 Te5. Adv Mater 31(39), e1900784 (2019)

    Google Scholar 

  52. M. Malekan, R. Rashidi, S.G. Shabestari, Mechanical properties and crystallization kinetics of Er-containing Cu–Zr–Al bulk metallic glasses with excellent glass forming ability. Vacuum 174, 109223 (2020)

    ADS  Google Scholar 

  53. N.X. Sun, X.D. Liu, K. Lu, An explanation to the anomalous avrami exponent. Scripta Mater. 34(8), 1201–1207 (1996)

    Google Scholar 

  54. S. Ranganathan, M. Von Heimendahl, The three activation energies with isothermal transformations: applications to metallic glasses. J. Mater. Sci. 16(9), 2401–2404 (1981)

    ADS  Google Scholar 

  55. J.I. Metals, Metals Data Book, Maruzen Tokyo, (1983)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Malekan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malekan, M., Rashidi, R. Effective role of minor silicon addition on crystallization kinetics of Cu50Zr43Al7 bulk metallic glass. Appl. Phys. A 127, 246 (2021). https://doi.org/10.1007/s00339-021-04394-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04394-z

Keywords

Navigation