Log in

Micro-structure, thermal, and dielectric performance of polyester nanocomposites containing nano-Ni0.5Zn0.5Fe2O4

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This manuscript aims to investigate the structural, thermal, and dielectric properties of polyester/Ni0.5Zn0.5Fe2O4 nanocomposites. The synthesized samples were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR), field emission scanning electron microscope, transmission electron microscope (TEM), thermogravimetric analysis (TGA), and dielectric measurements. The XRD patterns confirmed the existence of both polyester and Ni0.5Zn0.5Fe2O4 nanoparticles peaks. FTIR analysis confirmed the incorporation of Ni0.5Zn0.5Fe2O4 nanoparticles into the polyester matrix in agreement with XRD results. SEM micrographs showed distribution of nanoparticles inside the polymer and TEM image showed a little agglomeration of Ni0.5Zn0.5Fe2O4 with flake-like micrometer-sized particles. The incorporation of nanofiller into the polymer increases the thermal stability as the weight losses reduced with nanoparticles content. Dielectric analysis depicted the enhancement in both real and imaginary parts of permittivity when nanoparticles concentration increased. Additionally, the AC conductivity increased while the electric impedance decreased with increasing Ni0.5Zn0.5Fe2O4 concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Donya, T.A. Taha, A. Alruwaili, I.B.I. Tomsah, M. Ibrahim, Micro-structure and optical spectroscopy of PVA/iron oxide polymer nanocomposites. J. Mater. Res. Technol. 9(4), 9189–9194 (2020)

    Google Scholar 

  2. T.A. Taha, S.A. Saad, Processing, thermal and dielectric investigations of polyester nanocomposites based on nano-CoFe2O4. Mater. Chem. Phys. 255, 123574 (2020)

    Google Scholar 

  3. H. Hu, F. Zhang, S. Luo, W. Chang, J. Yue, C.H. Wang, Recent advances in rational design of polymer nanocomposite dielectrics for energy storage. Nano Energy 74, 04844 (2020)

    Google Scholar 

  4. G. Sharma, A. Kumar, S. Sharma, M. Naushad, R.P. Dwivedi, ALOthman, Z. A., Mola, G. T., Novel development of nanoparticles to bimetallic nanoparticles and their composites: a review. J. King Saud Univ. Sci. 31(2), 257–269 (2019)

    Google Scholar 

  5. C.N.R. Rao, K. Pramoda, Borocarbonitrides, BxCyNz, 2D nanocomposites with novel properties. Bull. Chem. Soc. Jpn. 92(2), 441–468 (2019)

    Google Scholar 

  6. T.A. Taha, Z. Ismail, M.M. Elhawary, Structural, optical and thermal characterization of PVC/SnO2 nanocomposites. Appl. Phys. A 124(4), 307 (2018)

    ADS  Google Scholar 

  7. T.A. Taha, S. Elrabaie, M.T. Attia, Exploring the structural, thermal and dielectric properties of PVA/Ni0.5Zn0.5 Fe2O4 composites. J. Electron. Mater. (2019). https://doi.org/10.1007/s00289-019-03059-5

    Article  Google Scholar 

  8. E.J. Bailey, K.I. Winey, Dynamics of polymer segments, polymer chains, and nanoparticles in polymer nanocomposite melts: a review. Progr. Polym. Sci. 105, 101242 (2020)

    Google Scholar 

  9. A. Nabok, Organic and Inorganic Nanostructures (Artech House Mems and Sensors Library), vol. 286 (Artech House Publishers Hardcover, Norwood, 2005)

    Google Scholar 

  10. J.M. Garces, D.J. Moll, J. Bicerano, R. Fibiger, D.G. McLeod, Polymeric nanocomposites for automotive applications. Adv. Mater. 12(23), 1835–1839 (2000)

    Google Scholar 

  11. V.V. Tsukruk, Molecular lubricants and glues for micro-and nanodevices. Adv. Mater. 13(2), 95–108 (2001)

    Google Scholar 

  12. J. Markarian, Automotive and packaging offer growth opportunities for nanocomposites. Plast. Addit. Compd. 7(6), 18–21 (2005)

    Google Scholar 

  13. H. Presting, U. König, Future nanotechnology developments for automotive applications. Mater. Sci. Eng. C 23(6–8), 737–741 (2003)

    Google Scholar 

  14. F. Gao, G. Beyer, Q. Yuan, A mechanistic study of fire retardancy of carbon nanotube/ethylene vinyl acetate copolymers and their clay composites. Polym. Degrad. Stab. 89(3), 559–564 (2005)

    Google Scholar 

  15. D. Singh, H.K. Malik, C.K. Gupta, V. Singh, X-ray diffraction studies for identification of polyethylene terephthalate fibres. Indian J. Sci. Technol. (2017). https://doi.org/10.17485/ijst/2017/v10i17/110232

    Article  Google Scholar 

  16. Y. Shirakata, N. Hidaka, M. Ishitsuka, A. Teramoto, T. Ohmi, High permeability and low loss Ni–Fe composite material for high-frequency applications. IEEE Trans. Magn. 44(9), 2100–2106 (2008)

    ADS  Google Scholar 

  17. R. Dosoudil, M. Usakova, J. Franek, J. Slama, A. Gruskova, Particle size and concentration effect on permeability and EM-wave absorption properties of hybrid ferrite polymer composites. IEEE Trans. Magn. 46(2), 436–439 (2010)

    ADS  Google Scholar 

  18. X.C. Li, R.Z. Gong, H.H. He, K.L. Yao, P.X. Lu, Centimeter-and millimeter-wave attenuation properties of carbonyl iron fiber-filled foam composites. IEEE Trans. Magn. 44(12), 4567–4570 (2008)

    ADS  Google Scholar 

  19. P.P. Sarangi, S.R. Vadera, M.K. Patra, N.N. Ghosh, Synthesis and characterization of pure single phase Ni–Zn ferrite nanopowders by oxalate based precursor method. Powder Technol. 203(2), 348–353 (2010)

    Google Scholar 

  20. T.H. Ting, R.P. Yu, Y.N. Jau, Synthesis and microwave absorption characteristics of polyaniline/NiZn ferrite composites in 2–40 GHz. Mater. Chem. Phys. 126(1–2), 364–368 (2011)

    Google Scholar 

  21. P. Annadurai, A.K. Mallick, D.K. Tripathy, Studies on microwave shielding materials based on ferrite-and carbon black-filled EPDM rubber in the X-band frequency. J. Appl. Polym. Sci. 83(1), 145–150 (2002)

    Google Scholar 

  22. N.E. Kazantseva, N.G. Ryvkina, I.A. Chmutin, Promising materials for microwave absorbers. J. Commun. Technol. Electron. 48(2), 173–184 (2003)

    Google Scholar 

  23. Z.W. Li, L. Chen, Y. Wu, C.K. Ong, Microwave attenuation properties of W-type barium ferrite BaZn2xCoxFe16O27 composites. J. Appl. Phys. 96(1), 534–539 (2004)

    ADS  Google Scholar 

  24. R. Dosoudil, M. Ušáková, J. Franek, J. Sláma, V. Olah, RF electromagnetic wave absorbing properties of ferrite polymer composite materials. J. Magn. Magn. Mater. 304(2), e755–e757 (2006)

    ADS  Google Scholar 

  25. Y.B. Feng, T. Qiu, C.Y. Shen, X.Y. Li, Electromagnetic and absorption properties of carbonyl iron/rubber radar absorbing materials. IEEE Trans. Magn. 42(3), 363–368 (2006)

    ADS  Google Scholar 

  26. S.M. Abbas, A.K. Dixit, R. Chatterjee, T.C. Goel, Complex permittivity, complex permeability and microwave absorption properties of ferrite–polymer composites. J. Magn. Magn. Mater. 309(1), 20–24 (2007)

    ADS  Google Scholar 

  27. Y.B. Feng, T. Qiu, C.Y. Shen, Absorbing properties and structural design of microwave absorbers based on carbonyl iron and barium ferrite. J. Magn. Magn. Mater. 318(1–2), 8–13 (2007)

    ADS  Google Scholar 

  28. T.A. Taha, S. Elrabaie, M.T. Attia, Green synthesis, structural, magnetic, and dielectric characterization of NiZnFe2O4/C nanocomposite. J. Mater. Sci. Mater. Electron. 29(21), 18493–18501 (2018)

    Google Scholar 

  29. S.S. Bhattacharya, S.B. Chaudhari, Study on structural, mechanical and functional properties of polyester silica nanocomposite fabric. Int. J. Pure Appl. Sci. Technol. 21(1), 43 (2014)

    Google Scholar 

  30. T.A. Taha, M.M. El-Molla, Green simple preparation of LiNiO2 nanopowder for lithium ion battery. J. Mater. Res. Technol. 9(4), 7955–7960 (2020)

    Google Scholar 

  31. M.H. Mahmoud, T.A. Taha, FTIR and Mössbauer spectroscopy investigations of Ag/FexAl2xO3 nanocomposites. J. Electron. Mater. 48(11), 7396–7403 (2019)

    ADS  Google Scholar 

  32. M.M. Rashad, D.A. Rayan, M. El-Gendy, M.M.E. Kholy, T.A. Taha, Structural and magnetic characteristics of ferroxplana Co2Y nanoferrites synthesized via two chemical routes. J. Supercond. Nov Magn 31(12), 4191–4198 (2018)

    Google Scholar 

  33. K. Dai, L. Song, S. Jiang, B. Yu, W. Yang, R.K. Yuen, Y. Hu, Unsaturated polyester resins modified with phosphorus-containing groups: effects on thermal properties and flammability. Polym. Degrad. Stab. 98(10), 2033–2040 (2013)

    Google Scholar 

  34. T.A. Taha, A.A. Azab, E.H. El-Khawas, Comprehensive study of structural, magnetic and dielectric properties of borate/Fe3O4 glass nanocomposites. J. Electron. Mater. 49(2), 1161–1166 (2020)

    ADS  Google Scholar 

  35. K. Vijaya Babu, G.V. Santosh Kumar, G. Satyanarayana, B. Sailaja, Ch. C. Sailaja Lakshmi, Microstructural and magnetic properties of Ni1-xCuxFe2O4 (x = 0.05, 0.1 and 0.15) nano-crystalline ferrites. J Sci-Adv. Mater. Dev. 3(2), 236–242 (2018)

    Google Scholar 

  36. A.M. El-Sayed, Influence of zinc content on some properties of Ni–Zn ferrites. Ceram. Int. 28(4), 363–367 (2002)

    Google Scholar 

  37. T.A. Taha, A. Saleh, Dynamic mechanical and optical characterization of PVC/fGO polymer nanocomposites. Appl. Phys. A 124(9), 600 (2018)

    ADS  Google Scholar 

  38. T.A. Taha, Optical properties of PVC/Al2O3 nanocomposite films. Polym. Bull. 76(2), 903–918 (2019)

    Google Scholar 

  39. T.A. Taha, A.A. Azab, AC conductivity and dielectric properties of borotellurite glass. J. Electron. Mater. 45(10), 5170–5177 (2016)

    ADS  Google Scholar 

  40. T.A. Taha, N. Hendawy, S. El-Rabaie, A. Esmat, M.K. El-Mansy, Fluorescence and dielectric spectroscopy identification of polyvinyl chloride/NiO nanocomposites. J. Mol. Struct. 1212, 128162 (2020)

    Google Scholar 

  41. I.B. Amor, H. Rekik, H. Kaddami, M. Raihane, M. Arous, A. Kallel, Studies of dielectric relaxation in natural fiber–polymer composites. J. Electrostat. 67(5), 717–722 (2009)

    Google Scholar 

  42. J.C. Giuntini, J.V. Zanchetta, D. Jullien, R. Eholie, P. Houenou, Temperature dependence of dielectric losses in chalcogenide glasses. J. Non-Cryst. Solids 45(1), 57–62 (1981)

    ADS  Google Scholar 

  43. T.A. Taha, A.A. Azab, Thermal, optical, and dielectric investigations of PVC/La0.95Bi0.05FeO3 nanocomposites. J. Mol. Struct. 1178, 39–44 (2019)

    ADS  Google Scholar 

  44. A.S. Abouhaswa, T.A. Taha, Tailoring the optical and dielectric properties of PVC/CuO nanocomposites. Polym. Bull. (2019). https://doi.org/10.1007/s00289-019-03059-5

    Article  Google Scholar 

  45. S.M. Usmanov, G.E. Zaikov, Numerical Methods of Solving Ill-Posed Problems of Dielectric Spectrometry (Nova Publishers, New York, 2002), p. 18

    Google Scholar 

  46. G.M. Tsangaris, G.C. Psarras, N. Kouloumbi, Electric modulus and interfacial polarization in composite polymeric systems. J. Mater. Sci. 33(8), 2027–2037 (1998)

    ADS  Google Scholar 

  47. B.P. Sahoo, K. Naskar, R.N.P. Choudhary, S. Sabharwal, D.K. Tripathy, Dielectric relaxation behavior of conducting carbon black reinforced ethylene acrylic elastomer vulcanizates. J. Appl. Polym. Sci. 124(1), 678–688 (2012)

    Google Scholar 

  48. L. Karasek, M. Sumita, Characterization of dispersion state of filler and polymer–filler interactions in rubber–carbon black composites. J. Mater. Sci. 31(2), 281–289 (1996)

    ADS  Google Scholar 

  49. G.T. Mohanraj, T.K. Chaki, A. Chakraborty, D. Khastgir, AC impedance analysis and EMI shielding effectiveness of conductive SBR composites. Polym. Eng. Sci. 46(10), 1342–1349 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Taha.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taha, T.A., Hassona, A., Elrabaie, S. et al. Micro-structure, thermal, and dielectric performance of polyester nanocomposites containing nano-Ni0.5Zn0.5Fe2O4. Appl. Phys. A 126, 761 (2020). https://doi.org/10.1007/s00339-020-03950-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03950-3

Keywords

Navigation