Log in

Influence of heat accumulation during laser micromachining of CoCrMo alloy with ultrashort pulses in burst mode

  • S.I. : Current State-Of-The-Art in Laser Ablation
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This study presents experimental and theoretical results of material removal of cobalt chrome alloy (CoCrMo) using high-frequency picosecond laser pulses. Depending on the fluence and number of pulses in a burst, structures are created to be able to determine the ablated volume per pulse in burst, the structure depth and the surface roughness. A single pulse in the burst represents the ordinary pulsed laser radiation. Depending on the number of pulses, the ablated volume per pulse and the achieved depth of the structure, respectively, rises in the burst. Furthermore, a smoothing effect on the machined surface is revealed depending on selected parameters. An energy-dispersive X-ray analysis demonstrates that the stoichiometry remains the same after material processing in burst mode. To be able to simulate the material removal as well as the accumulated residual heat, the required parameters such as threshold fluence, effective penetration depth and the incubation factor are determined experimentally. The simulations demonstrate that laser-induced heat accumulation contributes to material removal and establish the smoothing effect through the use of the burst mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. G. Bonamis, K. Mishchick, E. Audouard, C. Hönninger, E. Mottay, J. Lopez, I. Manek-Hönninger, J. Laser Appl. 31(2), 022205 (2019). https://doi.org/10.2351/1.5096087

    Article  ADS  Google Scholar 

  2. P. Lickschat, J. Schille, G. Reiße, S. Weißmantel 307, (2014)

  3. P. Lickschat, A. Demba, S. Weissmantel, Appl. Phys. A 123(2), 137 (2017). https://doi.org/10.1007/s00339-016-0743-y

    Article  ADS  Google Scholar 

  4. D. Metzner, P. Lickschat, S. Weißmantel, Appl. Phys. A 125(7), 3439 (2019). https://doi.org/10.1007/s00339-019-2755-x

    Article  Google Scholar 

  5. D. Metzner, P. Lickschat, S. Weißmantel, Appl. Phys. A 125(6), 172 (2019). https://doi.org/10.1007/s00339-019-2696-4

    Article  Google Scholar 

  6. B. Neuenschwander, B. Jaeggi, D.J. Foerster, T. Kramer, S. Remund, J. Laser Appl. 31(2), 022203 (2019). https://doi.org/10.2351/1.5096083

    Article  ADS  Google Scholar 

  7. T. Kramer, B. Neuenschwander, B. Jäggi, S. Remund, U. Hunziker, J. Zürcher, Phys. Procedia 83, 123 (2016). https://doi.org/10.1016/j.phpro.2016.08.024

    Article  ADS  Google Scholar 

  8. B. Jaeggi, S. Remund, Y. Zhang, T. Kramer, B. Neuenschwander, J. Laser Micro Nanoeng. 12, 258 (2017). https://doi.org/10.2961/jlmn.2017.03.0015

    Article  Google Scholar 

  9. A. Žemaitis, P. Gečys, M. Barkauskas, G. Račiukaitis, M. Gedvilas, Sci. Rep. 9(1), 1 (2019)

    Article  Google Scholar 

  10. B. Neuenschwander, T. Kramer, B. Lauer, B. Jaeggi, Burst mode with ps- and fs-pulses: Influence on the removal rate, surface quality, and heat accumulation. Proc. SPIE 9350, March 2015. Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XX, vol. 9350 (Society of Photo-Optical Instrumentation Engineers, San Francisco, 2015). https://doi.org/10.1117/12.2076455

  11. C. Gaudiuso, G. Giannuzzi, A. Volpe, P.M. Lugarà, I. Choquet, A. Ancona, Opt. Express 26(4), 3801 (2018). https://doi.org/10.1364/OE.26.003801

    Article  ADS  Google Scholar 

  12. S. Bashir, M.S. Rafique, W. Husinsky, Radiat Eff. Defects Sol. 168(11–12), 902 (2013). https://doi.org/10.1080/10420150.2013.784911

    Article  ADS  Google Scholar 

  13. V. Villerius, H. Kooiker, J. Post, Y.T. Pei, Int. J. Mach. Tools Manuf. 138, 27 (2019). https://doi.org/10.1016/j.ijmachtools.2018.11.003

    Article  Google Scholar 

  14. C. Wu, L.V. Zhigilei, Appl. Phys. A 114(1), 11 (2014)

    Article  ADS  Google Scholar 

  15. P. Mannion, J. Magee, E. Coyne, G.M. O’Connor, Ablation thresholds in ultrafast laser micromachining of common metals in air. Proc. SPIE 4876, Opto-Ireland 2002. Optics and Photonics Technologies and Applications. vol. 4876 (Society of Photo-Optical Instrumentation Engineers, Galway, 2002).https://doi.org/10.1117/12.463744

  16. M. Hashida, A. Semerok, O. Gobert, G. Petite, Y. Izawa, J. Wagner, Appl. Surf. Sci. 197–198, 862 (2002). https://doi.org/10.1016/S0169-4332(02)00463-4

    Article  ADS  Google Scholar 

  17. B.N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, A. Tünnermann, Appl. Phys. Mater. Sci. Process. 63(2), 109 (1996). https://doi.org/10.1007/BF01567637

    Article  ADS  Google Scholar 

  18. S. Preuss, A. Demchuk, M. Stuke, Appl. Phys. Mater. Sci. Proc. 61(1), 33 (1995). https://doi.org/10.1007/BF01538207

    Article  ADS  Google Scholar 

  19. J. Furmanski, A.M. Rubenchik, M.D. Shirk, B.C. Stuart, J. Appl. Phys. 102(7), 073112 (2007). https://doi.org/10.1063/1.2794376

    Article  ADS  Google Scholar 

  20. G. Raciukaitis, J. Laser Micro Nanoeng. 4(3), 186 (2009). https://doi.org/10.2961/jlmn.2009.03.0008

    Article  Google Scholar 

  21. Yong Jee, Michael F. Becker, Rodger M. Walser, J. Opt. Soc. Am. B 5(3), 648 (1988). https://doi.org/10.1364/JOSAB.5.000648

    Article  ADS  Google Scholar 

  22. J.M. Liu, Opt. Lett. 7(5), 196 (1982). https://doi.org/10.1364/OL.7.000196

    Article  ADS  Google Scholar 

  23. J. Penczak, R. Kupfer, I. Bar, R.J. Gordon, Spectrosc. Spectrochim. Acta Part B Atom. 97, 34 (2014). https://doi.org/10.1016/j.sab.2014.04.007

    Article  ADS  Google Scholar 

  24. D.J. Förster, S. Faas, S. Gröninger, F. Bauer, A. Michalowski, R. Weber, T. Graf, Appl. Surf. Sci. 440, 926 (2018). https://doi.org/10.1016/j.apsusc.2018.01.297

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was funded by the European Social Fund for Germany (ESF) in the project Eila-Sax No. 1003 395 06 and the project Qualitätsoptimierter Hochrateabtrag No. 1003 606 36.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Metzner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendixes

Appendixes

Fig. 18
figure 18

SEM images of machined material surface in single mode (top left) and in burst mode at a fluence of 1.5 \(\mathrm {J/cm}^{2}\) per pulse

Fig. 19
figure 19

SEM images from the bottoms of the structures at a defined ablation depth of \(100\,{\upmu } \hbox {m}\). SM \(=\) single mode | BM \(=\) burst mode. The selected parameters of the machining are presented in Table 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metzner, D., Lickschat, P. & Weißmantel, S. Influence of heat accumulation during laser micromachining of CoCrMo alloy with ultrashort pulses in burst mode. Appl. Phys. A 126, 84 (2020). https://doi.org/10.1007/s00339-019-3203-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3203-7

Navigation