Log in

Experimental and theoretical study of Fe do** as a modifying factor in electrochemical behavior of mixed-phase molybdenum oxide thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Here, the sol–gel derived spin-coated undoped and Fe-doped molybdenum oxide thin films were investigated. The XRD spectra revealed that the prepared films were crystallized into mixed phases of orthorhombic α-MoO3 and oxygen-deficient molybdenum oxide (MoO2.8). The FESEM and AFM images showed that the addition of Fe dopant led to the transformation of morphology from shapeless elongated nanoparticles to homogeneously distributed truncated cubic nanoparticles on the surface of the films. Ab-initio calculations were also carried out to qualitatively model the experimentally obtained results related to the electronic properties of the samples. Cyclic voltammetry analysis and electrochemical impedance spectroscopy were applied to explore the electrochemical behavior of undoped and Fe-doped film electrodes. The increase of Fe content noticeably promoted the ion storage capacitance of the films by improving the conductivity of the host oxide and facilitating charge transfer reactions at the electrolyte–electrode interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig. 8
Fig.9
Fig.10
Fig.11

Similar content being viewed by others

References

  1. R. Amirante, E. Cassone, E. Distaso, P. Tamburrano, Energy Convers. Manag. 132, 372–387 (2017)

    Google Scholar 

  2. C. Liu, Z.G. Neale, G. Cao, Mater. Today 19, 109–123 (2016)

    Google Scholar 

  3. J.R. Miller, P. Simon, Sci. Mag. 321, 651–652 (2008)

    Google Scholar 

  4. P. Simon, Y. Gogotsi, in Nanoscience and Technology: a collection of reviews from nature journals, ed. By P Rodgers (World Scientific, Singapore, 2009) p. 325

  5. V. Augustyn, P. Simon, B. Dunn, E. Science, Energy Environ. Sci. 7, 1597–1614 (2014)

    Google Scholar 

  6. T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Nat. Mater. 9, 146–151 (2010)

    ADS  Google Scholar 

  7. H. Farsi, F. Gobal, H. Raissi, S. Moghiminia, J. Solid State Electr. 14, 643–650 (2010)

    Google Scholar 

  8. J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X.W Lou, Adv. Mater. 24, 5166–5180 (2012)

    Google Scholar 

  9. M.-K. Song, S. Cheng, H. Chen, W. Qin, K.-W. Nam, S. Xu, X.-Q. Yang, A. Bongiorno, J. Lee, J. Bai, Nano Lett. 12, 3483–3490 (2012)

    ADS  Google Scholar 

  10. M. Dhanasankar, K.K. Purushothaman, G. Muralidharan, Mater. Res. Bull. 45, 1969–1972 (2010)

    Google Scholar 

  11. G. Wang, Y. Ling, Y. Li, Nanoscale 4, 6682–6691 (2012)

    ADS  Google Scholar 

  12. X. Hu, W. Zhang, X. Liu, Y. Mei, Y. Huang, Chem. Soc. Rev. 44, 2376–2404 (2015)

    Google Scholar 

  13. N. Illyaskutty, S. Sreedhar, H. Kohler, R. Philip, V. Rajan, V.M. Pillai, J. Phys. Chem. C 117, 7818–7829 (2013)

    Google Scholar 

  14. I. Shakir, M. Shahid, H.W. Yang, D.J. Kang, Electrochim. Acta 56, 376–380 (2010)

    Google Scholar 

  15. H. Ding, H. Lin, B. Sadigh, F. Zhou, V. Ozolins, M. Asta, J. Phys. Chem. C 118, 15565–15572 (2014)

    Google Scholar 

  16. A. Hashem, S. Abbas, A. Abdel-Ghany, A. Eid, A. Abdel-Khalek, S. Indris, H. Ehrenberg, A. Mauger, C.M. Julien, J. Alloys and Compd. 686, 744–752 (2016)

    Google Scholar 

  17. H.S. Kim, J.B. Cook, H. Lin, J.S. Ko, S.H. Tolbert, V. Ozolins, B. Dunn, Nat. Mater. 16, 454–460 (2017)

    ADS  Google Scholar 

  18. X. Lu, Y. Zeng, M. Yu, T. Zhai, C. Liang, S. **e, M.S. Balogun, Y. Tong, Adv. Mater. 26, 3148–3155 (2014)

    Google Scholar 

  19. T. Zhai, X. Lu, Y. Ling, M. Yu, G. Wang, T. Liu, C. Liang, Y. Tong, Y. Li, Adv. Mater. 26, 5869–5875 (2014)

    Google Scholar 

  20. S. Yu, P. Zhang, S. Wu, A. Li, Z. Zhu, Y. Yang J. Solid State Electr. 18, 2071–2075 (2014)

    Google Scholar 

  21. K. Inzani, M. Nematollahi, F. Vullum-Bruer, T. Grande, T. Reenaas, S. Selbach, Phys. Chem. Chem. Phys. 19, 9232–9245 (2017)

    Google Scholar 

  22. H.A. Tahini, X. Tan, S.N. Lou, J.A. Scott, R. Amal, Y.H. Ng, S.C. Smith, A.C.S. Appl, Mater. Interfaces 8, 32815–32822 (2016)

    Google Scholar 

  23. P. Chetri, A. Choudhury, J. Alloys and Compd. 627, 261–267 (2015)

    Google Scholar 

  24. E.D. Hanson, L. Lajaunie, S. Hao, B.D. Myers, F. Shi, A.A. Murthy, C. Wolverton, R. Arenal, V.P. Dravid, Adv. Funct. Mater. 27, 1605380 (2017)

    Google Scholar 

  25. Z. Hanafi, M. Khilla, M. Askar, Thermochim. Acta 45, 221–232 (1981)

    Google Scholar 

  26. D. Nečas, P. Klapetek, Open Phys. 10, 181–188 (2012)

    ADS  Google Scholar 

  27. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys. Condens. Matter 14, 2745 (2002)

    ADS  Google Scholar 

  28. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  29. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    ADS  Google Scholar 

  30. C. Díaz, V. Lavayen, C. O'Dwyer, J. Solid State Chem. 183, 1595–1603 (2010)

    ADS  Google Scholar 

  31. H. Luo, M. Wei, K. Wei, Mater. Chem. Phys. 113, 85–90 (2009)

    Google Scholar 

  32. Q.Y. Ouyang, L. Li, Q.S. Wang, Y. Zhang, T.S. Wang, F.N. Meng, Y.J. Chen, P. Gao, Sens. Actuators B: Chem. 169, 17–25 (2012)

    Google Scholar 

  33. M. Nilkar, F.E. Ghodsi, A. Abdolahzadeh Ziabari, Appl. Phys. A (2015) 118:1377–1386

  34. R. Tripathi, A. Kumar, C. Bharti, T. Sinha, Curr. Appl. Phys. 10, 676–681 (2010)

    ADS  Google Scholar 

  35. M. Amiri Asiabar, Z .Mohaghegh, F.E. Ghodsi. Appl. Phys. A 124, 51 (2018)

  36. R. Swanepoel, J. Phys. E: Sci. Instrum. 16, 1214 (1983)

    ADS  Google Scholar 

  37. M. Mulato, I. Chambouleyron, E. Birgin, J. Martınez, Appl. Phy. Lett. 77, 2133–2135 (2000)

    ADS  Google Scholar 

  38. S. Dutta, S. Som, J. Priya, S. Sharma, Band gap. Solid State Sci. 18, 114–122 (2013)

    ADS  Google Scholar 

  39. N. Rajeswari Yogamalar, A. Chandra Bose, Appl. Phys. A 103, 33 (2011)

    Google Scholar 

  40. E. Burstein, Phys. Rev. 93, 632 (1954)

    ADS  Google Scholar 

  41. M. Baradaran, F.E. Ghodsi, C. Bittencourt, E. Llobet, J. Alloys and Compd. 788, 289–301 (2019)

    Google Scholar 

  42. J. Hafner, C. Wolverton, G. Ceder, MRS Bull. 31, 659–668 (2006)

    Google Scholar 

  43. C. Forbes, M. Evans, N. Hastings, B. Peacock, Statistical distributions (Wiley, New Jersey, 2011), pp. 32–43

    MATH  Google Scholar 

  44. P. Eaton, P. West, Atomic force microscopy (Oxford University Press, New York, 2010), pp. 110–129

    Google Scholar 

  45. Y. Zhao, G.C. Wang, T.M. Lu, in Experimental methods in the physical sciences ed. By R. Celotta, T. Lucatorto (Academic Press, New York, 2001) p. 17

  46. E. Gadelmawla, M. Koura, T. Maksoud, I. Elewa, H. Soliman, J. Mater. Process. Technol. 123, 133–145 (2002)

    Google Scholar 

  47. Z. Bazhan, F.E. Ghodsi, J. Mazloom, Appl. Phys. A 122, 551 (2016)

    ADS  Google Scholar 

  48. A.E. Lita, J.E. Sanchez Jr., Phys. Rev. B 61, 7692 (2000)

    ADS  Google Scholar 

  49. C. Douketis, Z. Wang, T.L. Haslett, M. Moskovits, Phys. Rev. B 51, 11022 (1995)

    ADS  Google Scholar 

  50. K.N. Jung, S.I. Pyun, Electrochim. Acta 51, 2646–2655 (2006)

    Google Scholar 

  51. R.R. Kharade, S. Mali, S. Mohite, V. Kondalkar, P. Patil, P. Bhosale, Electroanal. 26, 2388–2397 (2014)

    Google Scholar 

  52. G. Wang, S. Bewlay, J. Yao, J.H. Ahn, S. Dou, H.K. Liu, Electrochem. Solid State Lett. 7, A503–A506 (2004)

    Google Scholar 

  53. S.K. Meher, G.R. Rao, J. Phys. Chem. C 115, 15646–15654 (2011)

    Google Scholar 

  54. M.V. Reddy, G. Prithvi, K.P. Loh, B.V.R. Chowdari, ACS Appl Mater Interfaces 6, 680–690 (2013)

    Google Scholar 

  55. Y. Zhang, H. Liu, M. Huang, J.M. Zhang, W. Zhang, F. Dong, Y.X. Zhang, Chem. Electro. Chem. 4, 721–727 (2017)

    Google Scholar 

  56. K. Mahesh, H. Manjunatha, R. Shivashankaraiah, G. Suresh, T.V. Venkatesha, J. Electrochem. Soc. 159, A1040–A1047 (2012)

    Google Scholar 

  57. G. Hernández-Labrado, R. Contreras-Donayre, J. Collazos-Castro, J.L. Polo, J. Electroanal. Chem. 659, 201–204 (2011)

    Google Scholar 

  58. A.N. Naveen, S. Selladurai, Ionics 22, 1471–1483 (2016)

    Google Scholar 

  59. D.K. Kampouris, X. Ji, E.P. Randviir, C.E. Banks, Rsc Adv. 5, 12782–12791 (2015)

    Google Scholar 

  60. S. Huang, Y. **, Z. Su, Q. **, J. Zhao, Anal Methods UK 9, 1650–1657 (2017)

    Google Scholar 

  61. M. Mirzaeian, P.J. Hall, J. Power Sour. 195, 6817–6824 (2010)

    ADS  Google Scholar 

  62. R. Manikandan, C.J. Raj, M. Rajesh, B.C. Kim, S.Y. Park, B.B. Cho, K.H. Yu, Electrochim. Acta 230, 492–500 (2017)

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the University of Guilan Research Council for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. E. Ghodsi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Layegh, M., E. Ghodsi, F. & Hadipour, H. Experimental and theoretical study of Fe do** as a modifying factor in electrochemical behavior of mixed-phase molybdenum oxide thin films. Appl. Phys. A 126, 14 (2020). https://doi.org/10.1007/s00339-019-3188-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3188-2

Navigation