Log in

Preparation and performance of Fe3O4/TiO2 nanocomposite with enhanced photo-Fenton activity for photocatalysis by facile hydrothermal method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The photocatalytic degradation of crystal violet organic dye was carried out in presence of various percentages of composite catalyst under UV light irradiation. In this study Fe3O4/TiO2 nanocomposites were synthesized by hydrothermal method, which is simple and cost effective. Using various standard characterization techniques, the physical and chemical properties of the prepared nanocatalyst were determined. The crystallinity and surface morphology were analyzed by X-ray diffraction and scanning electron microscopy. The primary absorption bands were observed using Fourier transform infrared spectroscopy. The optical property which plays a major role in photodegradation was examined using UV–visible spectroscopy. The magnetic behavior of the sample was determined by vibrating sample magnetometer. The optimized and highly efficient Fe3O4/TiO2 (1:4) nanocomposite exhibits enhanced photocatalytic activity in the degradation of crystal violet dye. The efficiency of the catalyst and its photocatalytic mechanism by introducing hydroxyl radical as an oxidizing agent have been explained in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. P. Wang, Q. Shi, Y. Shi, K.K. Clark, G.D. Stucky, A.A. Keller, J. Am. Chem. Soc. 131, 182–188 (2008)

    Article  Google Scholar 

  2. I. Ali, Chem. Rev. 112, 5073–5091 (2012)

    Article  Google Scholar 

  3. R.K. Upadhyay, N. Soin, S.S. Roy, RSC Adv. 4, 3823–3851 (2014)

    Article  Google Scholar 

  4. B. Prasad, C. Ghosh, A. Chakraborty, N. Bandyopadhyay, R.K. Ray, Desalination 274, 105–112 (2011)

    Article  Google Scholar 

  5. J. Schneider, M. Matsuoka, M. Takeuchi, Yu. **long Zhang, M.A. Horiuchi, D.W. Bahnemann, Chem. Rev. 114, 9919–9986 (2014)

    Article  Google Scholar 

  6. T. Zhang, X. Yan, D.D. Sun, J. Hazard. Mater. 243, 302–310 (2012)

    Article  Google Scholar 

  7. J.-M. Herrmann, Top. Catal. 34, 49–65 (2005)

    Article  Google Scholar 

  8. J. Blanco-Galvez, P. Fernandez-Ibanez, S. Malato-Rodrıguez, J. Sol. Energy Eng. 129, 4–15 (2007)

    Article  Google Scholar 

  9. Z. Liua, J. Chen, Y. Zhang, W. Liangpeng, X. Li, Mater. Chem. Phys. 128, 1–5 (2011)

    Article  Google Scholar 

  10. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69–96 (1995)

    Article  Google Scholar 

  11. H. Li, Y. Zhang, S. Wang, W. Qin, C. Liu, J. Hazard. Mater. 169, 1045–1053 (2009)

    Article  Google Scholar 

  12. C.-L. Zhu, M.-L. Zhang, Y.-J. Qiao, G. **ao, F. Zhang, Y.-J. Chen, J. Phys. Chem. C 114, 16229–16235 (2010)

    Article  Google Scholar 

  13. W. Fu, H. Yang, L. Chang, M. Li, G. Zou, Coll. Surf. A 289, 47–52 (2006)

    Article  Google Scholar 

  14. C.T. Yavuz, J.T. Mayo, W.W. Yu, A. Prakash, J.C. Falkner, S. Yean, L. Cong, H.J. Shipley, A. Kan, M. Tomson, D. Natelson, V.L. Colvin, Science 314, 964–967 (2006)

    Article  Google Scholar 

  15. A. Shabani, G. Nabiyouni, J. Saffari, D. Ghanbari, J. Mater. Sci. 27, 8661 (2016)

    Google Scholar 

  16. L. Zheng, X. Hui, F. Pi, Y. Zhang, X. Sun, RSC Adv. 6, 87273–87281 (2016)

    Article  Google Scholar 

  17. Q. Zhang, G. Meng, W. Jianning, D. Li, Z. Liu, Opt. Mater. 46, 52–58 (2015)

    Article  ADS  Google Scholar 

  18. L. Fernández, M. Gamallo, M.A. González-Gómez, C. Vázquez-Vázquez, J. Rivas, M. Pintado, M.T. Moreira, J. Environ. Manage. 237, 595–608 (2019)

    Article  Google Scholar 

  19. L. Zhang, W. Wang, J. Yang, Z. Chen, W. Zhang, L. Zhou, S. Liu, Appl. Catal. A 308, 105–110 (2006)

    Article  Google Scholar 

  20. J. Zhan, H. Zhang, G. Zhu, Ceram. Int. 40, 8547–8559 (2014)

    Article  Google Scholar 

  21. T. **n, M. Ma, H. Zhang, J. Gu, S. Wang, M. Liu, Q. Zhang, Appl. Surf. Sci. 288, 51–59 (2014)

    Article  ADS  Google Scholar 

  22. X. Shoufang, L. Hongzhi, L. Chen, X. Wang, RSC Adv. 4, 45266–45274 (2014)

    Article  Google Scholar 

  23. D. Wang, J. Yang, X. Li, J. Wang, H. Zhai, J. Lang, H. Song, Phys. Status Solidi A 214, 1600665 (2017)

    Article  ADS  Google Scholar 

  24. Q. He, Z. Zhang, J. **ong, Y. **ong, H. **ao, Opt. Mater. 31, 380 (2008)

    Article  ADS  Google Scholar 

  25. T.C. Cheng, K.S. Yao, N. Yeh, C.I. Chang, H.C. Hsu, Y.T. Chien, C.Y. Chang, Surf. Coat. Technol. 204, 1141–1144 (2009)

    Article  Google Scholar 

  26. Q. Yuan, N. Li, W. Geng, Y. Chi, X. Li, Mater. Res. Bull. 47, 2396–2402 (2012)

    Article  Google Scholar 

  27. J.S. Choi, H.K. Youn, B.H. Kwak, Q. Wang, K.S. Yang, J.S. Chung, Appl. Catal. B 91, 210–216 (2009)

    Article  Google Scholar 

  28. W. Jiang, X. Zhang, X. Gong, F. Yan, Z. Zhang, Int. J. Smart Nano Mater. 1, 278–287 (2010)

    Article  Google Scholar 

  29. A. Persis Amaliya, S. Anand, S. Pauline, J. Magn. Magn. Mater. 467, 14–28 (2018)

    Article  ADS  Google Scholar 

  30. M.M.L. Sonia, S. Anand, S. Blessi, S. Pauline, A. Manikandan, Ceram. Int. 44(18), 22068–22079 (2018)

    Article  Google Scholar 

  31. S. Anand, A. Persis Amaliya, M. Asisi Janifer, S. Pauline, Mod. Electr. Mater. 3, 168–173 (2017)

    Article  Google Scholar 

  32. M.M.L. Sonia, S. Anand, V. Maria Vinosel, M. Asisi Janifer, S. Pauline, J. Magn. Magn. Mater. 466, 238–251 (2018)

    Article  ADS  Google Scholar 

  33. M.R. Loghman-Estarki, S. Torkian, R. Rastabi, A. Amini Rastabi, J. Magn. Magn. Mater. 442, 163–175 (2017)

    Article  ADS  Google Scholar 

  34. M.M.L. Sonia, S. Anand, V. Maria Vinosel, M. Asisi Janifer, S. Pauline, J. Mater. Sci. 29(17), 15006–15021 (2018)

    Google Scholar 

  35. D. Ravelli, D. Dondi, M. Fagnoni, A. Albini, Chem. Soc. Rev. 38, 1999–2011 (2009)

    Article  Google Scholar 

  36. H. Sun, L. Cao, L. Lehui, Nano Res. 4, 550–562 (2011)

    Article  Google Scholar 

  37. C.A. Bignozzi, B.D. Alexander, Photocatalysis (Springer, Berlin, 2011)

    Book  Google Scholar 

  38. K. Tanaka, M.F.V. Capule, T. Hisanag, Chem. Phys. Lett. 187, 73–76 (1991)

    Article  ADS  Google Scholar 

  39. T. Kawahara, Y. Konishi, H. Tada, N. Tohge, J. Nishii, S. Ito, Angew. Chem. 114(15), 2935–2937 (2002)

    Article  Google Scholar 

  40. Yu. Jiaguo, Q. **ang, M. Zhou, Appl. Catal. B 90(3), 595–602 (2009)

    Google Scholar 

  41. W. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem. 98(51), 13669–13679 (1994)

    Article  Google Scholar 

  42. B. Jiang, C. Tian, Q. Pan, Z. Jiang, J.-Q. Wang, W. Yan, F. Honggang, J. Phys. Chem. C 115, 23718–23725 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to SAIF, IIT-Madras, Chennai, for samples characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pauline.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinosel, V.M., Anand, S., Janifer, M.A. et al. Preparation and performance of Fe3O4/TiO2 nanocomposite with enhanced photo-Fenton activity for photocatalysis by facile hydrothermal method. Appl. Phys. A 125, 319 (2019). https://doi.org/10.1007/s00339-019-2622-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2622-9

Navigation