Log in

Solidification characteristics and segregation behavior of a P-containing Ni–Fe–Cr-based alloy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Solidification characteristics and segregation behavior of a P-containing Ni–Fe–Cr-based alloy, considered as boiler and turbine materials in 700 °C advanced ultra-supercritical coal-fired power plants, have been investigated by differential thermal analysis and directional solidification quenching technique. Results reveal that P decreases the solidus temperature, but only has negligible influence on liquidus temperature. After P was added, the solidification sequence has no apparent change, but the width of the mushy zone increases and dendritic structures become coarser. Moreover, P increases the amount and changes the morphology of MC carbide. Energy-dispersive spectroscopy analysis reveals that P has obvious influence on the segregation behavior of the constitute elements with equilibrium partition coefficients (\(k_{i}\)) far away from unity, whereas has negligible effect on the constituent elements with \(k_{i}\) close to unity and has more influence on the final stage of solidification than at early stage. The distribution profiles reveal that P atoms pile up ahead of the solid/liquid (S/L) interface and strongly segregate to the interdendritic liquid region. The influence of P on solidification characteristics and segregation behavior of Ni–Fe–Cr-based alloy could be attributed to the accumulation of P ahead of the S/L interface during solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. B. Jørgen, K. Sven, R. Blum, Energy 31, 1439–1441 (2006)

    Google Scholar 

  2. P.D. Jablonski, J.A. Hawk, C.J. Cowen, P.J. Maziasz, JOM 64, 271–279 (2012)

    Article  Google Scholar 

  3. F. Abe, Engineering 1, 211 (2015)

    Article  Google Scholar 

  4. S.Q. Zhao, X.S. **e, G.D. Smith, S.J. Patel, Mater. Sci. Eng. A 355, 96 (2003)

    Article  Google Scholar 

  5. D. Tytko, P. Choi, J. Klöwer, A. Kostka, G. Inden, D. Raabe, Acta Mater. 60, 1731 (2012)

    Article  Google Scholar 

  6. I.S. Kim, B.G. Choi, H.U. Hong, J. Do, C.Y. Jo, Mater. Sci. Eng. A 593, 55 (2014)

    Article  Google Scholar 

  7. C.S. Wang, Y.A. Guo, J.T. Guo, L.Z. Zhou, Mater. Des. 88, 790 (2015)

    Article  Google Scholar 

  8. C.S. Wang, Y.A. Guo, J.T. Guo, L.Z. Zhou, Mater. Sci. Eng. A 670, 178–187 (2016)

    Article  Google Scholar 

  9. S.G. Tian, Y. Su, L.L. Yu, H.C. Yu, S. Zhang, B.J. Qin, Appl. Phys. A 104, 643 (2011)

    Article  ADS  Google Scholar 

  10. R.T. Holt, W. Wallace, Int. Met. Rev. 21, 1 (1976)

    Article  Google Scholar 

  11. M. Jang, J. Kang, J. Jang, T. Lee, C. Lee, Mater. Sci. Eng. A 684, 14 (2017)

    Article  Google Scholar 

  12. W.R. Sun, S.R. Guo, D.Z. Lu, Z.Q. Hu, Metall. Mater. Trans. A 28, 649 (1997)

    Article  Google Scholar 

  13. C.G. McKamey, C.A. Carmichael, W.D. Cao, R.L. Kennedy, Scripta Mater. 38, 485 (1998)

    Article  Google Scholar 

  14. X.B. Liu, J.X. Dong, B. Tang, X.H. Hu, X.S. **e, Mater. Sci. Eng. A 270, 190 (1999)

    Article  Google Scholar 

  15. S. Baik, M.J. Olszta, S.M. Bruemmer, D.N. Seidman, Scripta Mater. 66, 809 (2012)

    Article  Google Scholar 

  16. C.S. Wang, H.Q. Zhao, Y.A. Guo, J.T. Guo, L.Z. Zhou, Mater. Res. Innov. 18(S4), 324 (2014)

    Google Scholar 

  17. J.T. Guo, L.Z. Zhou, The effect of phosphorous, sulphur and silicon on segregation, solidification and mechanical properties of cast alloy 718, in Superalloys 1996, ed. by R.D. Kissinger, D.J. Deye, D.L. Anton, A.D. Cetal, M.V. Nathal, T.M. Pollock, D.A. Woodford (TMS, Warrendale, 1996), pp. 451–455

    Google Scholar 

  18. S. Zhang, X. **n, W.R. Sun, X.F. Sun, L.X. Yu, Y.C. Zhang, Z.Q. Hu, Trans. Nonferrous Met. Soc. China 25, 2939 (2012)

    Article  Google Scholar 

  19. N.L. Richards, M.C. Chaturvedi, Int. Met. Rev. 45, 109 (2000)

    Article  Google Scholar 

  20. P.K. Sung, D.R. Poirie, Metall. Mater. Trans. A 30, 2173 (1999)

    Article  Google Scholar 

  21. X.F. Ding, T. Mi, F. Xue, H.J. Zhou, M.L. Wang, J. Alloys Compd. 599, 159 (2014)

    Article  Google Scholar 

  22. L.T. Chang, H. **, W.R. Sun, J. Alloys Compd. 653, 266 (2015)

    Article  Google Scholar 

  23. F. Wang, D.X. Ma, S. Bogner, A. Bührig-Polaczek, Metall. Mater. Trans. A 47, 3703 (2016)

    Article  Google Scholar 

  24. D.M. Liu, X.Z. Li, Y.Q. Su, J.J. Guo, L.S. Luo, H.Z. Fu, Appl. Phys. A 110, 443 (2013)

    Article  ADS  Google Scholar 

  25. M.S.A. Karunaratne, D.C. Cox, P. Carter, R.C. Reed, Modeling of the microsegregation in CMSX-4 superalloy and its homogenization during heat treatment, in TMS, ed. by T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S.L. Olson, J.J. Schirra (Warrendale, PA, 2000), pp. 263–272

    Google Scholar 

  26. C.S. Wang, Y.A. Guo, J.T. Guo, L.Z. Zhou, Mater. Sci. Eng. A 675, 314 (2016)

    Article  Google Scholar 

  27. M. Vandyoussefi, H.W. Kerr, W. Kurz, Acta Mater. 45, 4093 (1997)

    Article  Google Scholar 

  28. J.W. Fu, Y.S. Yang, J. Alloys Compd. 508, 191 (2013)

    Article  Google Scholar 

  29. C.B. Yang, L. Liu, N. Luo, J. Zhang, B.J. Han, G. Liu, H.Z. Fu, Appl. Phys. A 117, 1971 (2014)

    Article  ADS  Google Scholar 

  30. C.S. Wang, J. Zhang, L. Liu, H.Z. Fu, J. Alloys Compd. 508, 440 (2010)

    Article  Google Scholar 

  31. A. Kagawa, T. Okamoto, J. Mater. Sci. 19, 2306 (1984)

    Article  ADS  Google Scholar 

  32. G. Zhou, W.H. Wang, Y.Y. Li, Acta Metall. Sin. 36, 472 (2000)

    Google Scholar 

  33. R. Trivedi, H. Minyahara, P. Mazumder, E. Simsek, S.N. Tewari, J. Cryst. Growth 22, 365 (2001)

    Article  ADS  Google Scholar 

  34. X. **n, A.H. Hang, Q. Feng, W.H. Zhang, F. Liu, H.C. Yang, W.R. Sun, Z.Q. Hu, Acta Metall. Sin. 46, 873 (2010)

    Article  Google Scholar 

  35. W. Kurz, D.J. Fisher, Acta Metall. 29, 11 (1981)

    Article  Google Scholar 

  36. T.Z. Kattamis, M.C. Flemings, Trans. Metall. Soc. AIME 239, 992 (1965)

    Google Scholar 

  37. L. Liu, F. Sommer, H.Z. Fu, Scripta Mater. Metall. 30, 587 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Energy Administration Program of China (No. NY20150102), the National Key Research and Development Program of China (No. 2017YFB0305204), the National Natural Science Foundation of China (No. 51301171), the Fund of the State Key Laboratory of Solidification Processing in NWPU (No. SKLSP201512) and the Science and Technology Program of Sichuan Province (2016JZ0036).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changshuai Wang or Lanzhang Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Su, H., Guo, Y. et al. Solidification characteristics and segregation behavior of a P-containing Ni–Fe–Cr-based alloy. Appl. Phys. A 123, 587 (2017). https://doi.org/10.1007/s00339-017-1208-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1208-7

Navigation