Log in

Omnidirectional non-radiative wireless power transfer with rotating magnetic field and efficiency improvement by metamaterial

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, omnidirectional wireless power transfer (OWPT) via magnetic resonant coupling is proposed based on rotating magnetic field. In contrast to conventional WPT, the proposed wireless power transmitter consists of two orthogonal loops with 90° feeding phase difference. Both theoretical analyses and numerical simulations show that such transmitter generates rotating magnetic field and can provide wireless power to multiple receivers moving around it. In addition, a cylindrical metamaterial slab with negative permeability is used to improve the efficiency of the OWPT system, for the unique property of enhancing evanescent wave of metamaterials. It is shown that the efficiency of the OWPT can be improved to more than five times of that of the original one by the metamaterial slab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.J. Casanova, Z.N. Low, J. Lin, Design and optimization of a class-E amplifier for a loosely coupled planar wireless power system. IEEE Trans. Circuits Syst II Express Br. 56(11), 830–834 (2009)

    Article  Google Scholar 

  2. Z.N. Low, J.J. Casanova, P.H. Maier, J.A. Taylor et al., IEEE Trans. Ind. Electron. 57, 1478 (2010)

    Article  Google Scholar 

  3. J.J. Casanova, Z.N. Low, J. Lin, et al. Transmitting coil achieving uniform magnetic field distribution for planar wireless power transfer system, In: Proceedings of IEEE Radio and Wireless Symposium, pp. 530–533

  4. C.J. Chen, T.H. Chu, C.L. Lin, Z.C. Jou, A study of loosely coupled coils for wireless power transfer. IEEE Trans. Circuits Syst. II Express Br. 57(7), 536–540 (2010)

    Article  Google Scholar 

  5. L. Chen, S. Liu, Y.C. Zhou, T.J. Cui, IEEE Trans. Ind. Electron. 60, 339 (2013)

    Article  ADS  Google Scholar 

  6. A. Kurs, A. Karalis, R. Moffatt, J.D. Joannopoulos, P. Fisher, M. Soljiacic, Science 317, 83 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  7. R.E. Hamam, A. Karalis, J.D. Joannopoulos, M. Soljacic, Ann. Phys. 324, 1783 (2009)

    Article  ADS  MATH  Google Scholar 

  8. J.C. Schuder, H.E. Stephenson, J.F. Townsend, High-level electromagnetic energy transfer through a closed chest wall. IRE Int Conv. Rec. 9, 119 (1961)

    Google Scholar 

  9. Z.N. Low, R.A. Chinga, R. Tseng, J. Lin, IEEE Trans. Ind. Electron. 56, 1801 (2009)

    Article  Google Scholar 

  10. G.A.J. Elliott, S. Raabe, G.A. Covic, J.T. Boy, IEEE Trans. Ind. Electron. 57, 1590 (2010)

    Article  Google Scholar 

  11. M. Ettorre, A. Grbic, IEEE Antennas Wirel. Propag. Lett. 11, 1150 (2012)

    Article  ADS  Google Scholar 

  12. J. Kim, H.-C. Son, K.-H. Kim, Y.-J. Park, IEEE Antennas Wirel. Propag. Lett. 10, 389 (2011)

    Article  Google Scholar 

  13. W. Zhong, C. Lee, R. Hui, IEEE Trans. Ind. Electron. 60, 261 (2013)

    Article  Google Scholar 

  14. M. Kiani, M. Ghovanloo, The circuit theory behind coupled-mode magnetic resonance-based wireless power transmission. IEEE Trans. Circuits Syst. I Regul. Pap. 59(9), 2065–2074 (2012)

    Article  MathSciNet  Google Scholar 

  15. B.J. Lee, A. Hillenius, D.S. Ricketts, Magnetic resonant wireless power delivery for distributed sensor and wireless systems, in 2012 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), pp. 13–16 (2012)

  16. B. Wang, T. Nishino, K.H. Teo, Wireless power transmission efficiency enhancement with metamaterials, in Proceedings of the IEEE International Conference on Wireless Information Technology and Systems (ICWITS’10), vol. 28 (Honululu, Hawai’i, 2010)

  17. Y. Urzhumov, D.R. Smith, Phys. Rev. B 83, 205114 (2011)

    Article  ADS  Google Scholar 

  18. B. Wang, K.H. Teo, T. Nishino, W. Yerazunis, J. Barnwell, J. Zhang, Wireless power transfer with metamaterials, in Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), pp. 3905–3908. (2011)

  19. B. Wang, K.H. Teo, T. Nishino, W. Yerazunis, J. Barnwell, J. Zhang, Appl. Phys. Lett. 98, 254101 (2011)

    Article  ADS  Google Scholar 

  20. B. Wang, K.H. Teo, Metamaterials for wireless power transfer in 2012 IEEE International Workshop on Antenna Technology (iWAT), pp. 161–164 (2012)

  21. D. Huang, Y. Urzhumov, D.R. Smith, K.H. Teo, J. Zhang, J. Appl. Phys. 111, 64902 (2012)

    Article  Google Scholar 

  22. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)

    Article  ADS  Google Scholar 

  23. D.R. Smith, Science 308, 502 (2005)

    Article  Google Scholar 

  24. R.A. Shelby, D.R. Smith, S. Schult, Science 292, 77 (2001)

    Article  ADS  Google Scholar 

  25. D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Science 305, 788 (2004)

    Article  ADS  Google Scholar 

  26. Y.K. Jung, B. Lee. Metamaterial-inspired loop antennas for wireless power transmission, in 2010 IEEE Antennas and Propagation Society International Symposium (APSURSI), pp. 1–4 (2010)

  27. Y. Zhao, V. Vutipongsatorn, E. Leelarasmee, Improving the efficiency of wireless power transfer systems using metamaterials, in 2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pp. 1–4 (2013)

  28. J. Wu, B. Wang, W.S. Yerazunis, K.H. Teo, Wireless power transfer with artificial magnetic conductors, in 2013 IEEE Wireless Power Transfer (WPT), pp. 155–158 (2013)

  29. K. Fotopoulou, B.W. Flynn, IEEE Trans. Magn. 47, 416 (2011)

    Article  Google Scholar 

  30. B. Wang, W. Yerazunis, K.H. Teo, Proc. IEEE 101, 1359 (2013)

    Article  Google Scholar 

  31. B. Wang, K.H. Teo, S. Yamaguchi, T. Takahashi, Y. Konishi, Flexible and mobile near-field wireless power transfer using an array of resonators. IEICE Technical Report, WPT2011-16, pp. 73–77 (2011)

  32. B. Wang, D. Ellstein, K.H. Teo, Analysis on wireless power transfer to moving devices based on array of resonators, in 2012 6th European Conference on Antennas and Propagation (EUCAP), pp. 964–967 (2012)

  33. R. Johari, J. Krogmeier, D. Love, Analysis and practical considerations in implementing multiple transmitters for wireless power transfer via coupled magnetic resonance. IEEE Trans. Ind. Electron. 61(4), 1774–1783 (2014)

    Article  Google Scholar 

  34. J. Zhao, X. Huang, W. Wang, Wireless power transfer with two-dimensional resonators. IEEE Trans. Magn. 50(1), 1–4 (2014)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 61371044), the Open Project Program of State Key Laboratory of Millimeter Wave (Grant Nos. K201403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan-Yi Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Che, BJ., Yang, GH., Meng, FY. et al. Omnidirectional non-radiative wireless power transfer with rotating magnetic field and efficiency improvement by metamaterial. Appl. Phys. A 116, 1579–1586 (2014). https://doi.org/10.1007/s00339-014-8409-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8409-0

Keywords

Navigation