Log in

Study on critical rake angle in nanometric cutting

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) simulations of nanometric-cutting copper are conducted to study the critical rake angle during the cutting process. A new approach based on the maximum displacement of atoms in cutting direction is proposed to estimate the chip formation in MD simulation. It is found that the minimum rake angle for chip formation is −65–(−70) and the subsurface deformations of copper are mostly the dislocation and stacking faults. Three-dimensional simulation results show that the effective rake angle of stagnation region is constant with the same depth of cut. According to the limited depth of cut of copper can be achieved, the available minimum tool edge radius is suggested to be not less than 10 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Z.J. Yuan, M. Zhou, S. Dong, Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecision machining. J. Mater. Process. Technol. 62, 327 (1996)

    Article  Google Scholar 

  2. M. Malekian, M.G. Mostofa, S.S. Park, M.B. Jun, Modeling of minimum uncut chip thickness in micro machining of aluminum. J. Mater. Process. Technol. 212, 553 (2012)

    Article  Google Scholar 

  3. X. Liu, R.E. Devor, S.G. Kapoor, An analytical model for the prediction of minimum chip thickness in micromachining. Trans. Am. Soc. Mech. Eng. 128, 474 (2006)

    Google Scholar 

  4. S.M. Son, H.S. Lim, J.H. Ahn, Effects of the friction on the minimum cutting thickness in micro cutting. Int. J. Mach. Tools Manuf. 45, 529 (2005)

    Article  Google Scholar 

  5. X.M. Lai, H.T. Li, C.F. Lin, Z.Q. Lin, J. Ni, Modeling and analysis of micro scale milling considering size effect micro cutter edge radius and minimum chip thickness. Int. J. Mach. Tools Manuf. 48, 1 (2007)

    Article  Google Scholar 

  6. S. Shimada, N. Ikawa, H. Tanaka, G. Ohmori, J. Uchikoshi, Feasibility study on ultimate accuracy in microcutting using molecular dynamics simulation. CIRP Ann. 42(1), 117 (1993)

    Article  Google Scholar 

  7. R. Komanduri, Some aspects of machining with negative rake tools simulating grinding. Int. J. Mach. Tool Des. Res. 11, 223 (1971)

    Article  Google Scholar 

  8. R. Komanduri, N. Chandrasekaran, L.M. Raff, Effect of tool geometry in nanometric cutting: A molecular dynamics simulation approach. Wear 219, 97 (1998)

    Article  Google Scholar 

  9. R. Komanduri, N. Chandrasekaran, L.M. Raff, Some aspects of machining with negative-rake tools simulating grinding a molecular dynamics simulation approach. Philos. Mag., B 79(7), 955 (1999)

    Article  ADS  Google Scholar 

  10. F.Z. Fang, V.C. Venkatesh, Diamond cutting of silicon with nanometric finish. CIRP Ann. 47, 45 (1998)

    Article  Google Scholar 

  11. F.Z. Fang, G.X. Zhang, An experimental study of edge radius effect on cutting single crystal silicon. Int. J. Adv. Manuf. Technol. 22, 703 (2003)

    Article  Google Scholar 

  12. F.Z. Fang, H. Wu, Y.C. Liu, Modeling and experimental investigation on nanometric cutting of monocrystalline silicon. Int. J. Mach. Tools Manuf. 45, 1681 (2005)

    Article  Google Scholar 

  13. F.Z. Fang, H. Wu, W. Zhou, X.T. Hu, A study on mechanism of nano-cutting single crystal silicon. J. Mater. Process. Technol. 184, 407 (2007)

    Article  Google Scholar 

  14. Q.X. Pei, C. Lu, H.P. Lee, Large scale molecular dynamics study of nanometric machining of copper. Comput. Mater. Sci. 41, 177 (2007)

    Article  Google Scholar 

  15. C.L. Kelchner, S.J. Plimpton, J.C. Hamilton, Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58(17), 11085 (1998)

    Article  ADS  Google Scholar 

  16. Z.G. Zhang, F.Z. Fang, X.T. Hu, Three-dimensional molecular dynamics modeling of nanocutting. J. Vac. Sci. Technol. B 27(3), 1340 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support of the State Key Development Program of Basic Research of China (“973” Project Grant No. 2011CB706703), and the National Natural Science Foundation of China (Grant Nos. 90923038 and 90923024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Z. Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, M., Zhang, X.D. & Fang, F.Z. Study on critical rake angle in nanometric cutting. Appl. Phys. A 108, 809–818 (2012). https://doi.org/10.1007/s00339-012-6973-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6973-8

Keywords

Navigation