Log in

Physical fabrication of colloidal ZnO nanoparticles combining wet-grinding and laser fragmentation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Combination of wet-grinding and laser fragmentation is a promising approach to advance both methods: Laser fragmentation will be more efficient when combined with mechanical treatment and wet-grinding may take advance of the abrasion-free laser process to achieve fabrication of smaller particles. By mechanical pre-treatment of zinc oxide microparticles in a stirred-media mill, the starting material is activated by generation of crystallographic defects, which strongly enhance the efficiency of subsequent laser fragmentation. Picosecond-laser irradiation of mechanically treated and untreated microparticles suspended in water yielded in colloidal zinc oxide nanoparticles. Furthermore, nanoparticle productivity and properties can be controlled by variation of anionic surfactant concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.A. Dahl, B.L.S. Maddux, J.E. Hutchison, Chem. Rev. 107, 2228 (2007)

    Article  Google Scholar 

  2. C. Knieke, C. Steinborn, S. Romeis, W. Peukert, S. Breitung-Faes, A. Kwade, Chem. Eng. Technol. 33, 1401 (2010)

    Article  Google Scholar 

  3. A. Kwade, Chem. Eng. Technol. 33, 1395 (2010)

    Article  Google Scholar 

  4. J.H. Bang, K.S. Suslick, Adv. Mater. 22, 1039 (2010)

    Article  Google Scholar 

  5. P. Wagener, S. Barcikowski, Appl. Phys. A 101, 435 (2010)

    Article  ADS  Google Scholar 

  6. T. Asahi, T. Sugiyama, H. Masuhara, Acc. Chem. Res. 41, 1790 (2008)

    Article  Google Scholar 

  7. R.H. Müller, C.M. Keck, J. Pharmacokinet. Biopharm. 80, 1 (2012)

    Article  Google Scholar 

  8. S. Breitung-Faes, A. Kwade, Chem. Eng. Res. Des. 86, 390 (2008)

    Article  Google Scholar 

  9. S. Breitung-Faes, A. Kwade, Powder Technol. 212, 383 (2011)

    Article  Google Scholar 

  10. Y. Tamaki, T. Asahi, H. Masuhara, Appl. Surf. Sci. 168, 85 (2000)

    Article  ADS  Google Scholar 

  11. Y. Tamaki, T. Asahi, H. Masuhara, J. Phys. Chem. A 106, 2135 (2002)

    Article  Google Scholar 

  12. J.-C. Sylvestre, M.-C. Tang, A. Furtos, G. Leclair, M. Meunier, J.-C. Leroux, J. Control. Release 149, 273 (2011)

    Article  Google Scholar 

  13. D. Horn, J. Rieger, Angew. Chem., Int. Ed. 40, 4330 (2001)

    Article  Google Scholar 

  14. D. Horn, J. Rieger, Angew. Chem. 113, 4460 (2001)

    Article  Google Scholar 

  15. S. Kenth, J.-P. Sylvestre, K. Fuhrmann, M. Meunier, J.-C. Leroux, J. Pharm. Sci. 100, 1022 (2011)

    Article  Google Scholar 

  16. V. Kruefu, E. Peterson, C. Khantha, C. Siriwong, S. Phanichphant, D.L. Caroll, Appl. Phys. Lett. 97, 053302 (2010)

    Article  ADS  Google Scholar 

  17. L.B. Kong, F. Li, L.Y. Zhang, X. Yao, J. Mater. Sci. Lett. 17, 769 (1998)

    Article  Google Scholar 

  18. C. Bouvy, B. Su, J. Mater. Sci. Technol. 24, 495 (2008)

    Article  Google Scholar 

  19. B.J. Garrison, L.V. Zhigilei, Appl. Surf. Sci. 127, 142 (1998)

    Article  Google Scholar 

  20. H. Zeng, S. Yang, W. Cai, J. Phys. Chem. C 115, 5038 (2011)

    Article  Google Scholar 

  21. G. Malyavantham, D.T. O’Brien, M.F. Becker, J.W. Keto, D. Kovar, J. Nanopart. Res. 6, 661 (2004)

    Article  Google Scholar 

  22. W. Beek, M. Wienk, R. Janssen, J. Mater. Chem. 15, 2985 (2005)

    Article  Google Scholar 

  23. P. Uthirakumar, C.-H. Hong, E.-K. Suh, Y.-S. Lee, Chem. Mater. 18, 4990 (2006)

    Article  Google Scholar 

  24. B. Sun, H. Sirringhaus, Nano Lett. 5, 2408 (2005)

    Article  ADS  Google Scholar 

  25. A. Umar, M.M. Rahman, S.H. Kim, Y.B. Hahn, Chem. Comm., 166 (2008)

  26. L. Zhang, Y. Jiang, Y. Ding, M. Povey, D. York, J. Nanopart. Res. 9, 479 (2007)

    Article  Google Scholar 

  27. N. Jones, B. Ray, K.T. Ranjit, A.C. Manna, FEMS Microbiol. Lett. 279, 71 (2008)

    Article  Google Scholar 

  28. P. Wagener, J. Jakobi, S. Barcikowski, J. Laser Micro Nanoeng. 6, 59 (2011)

    Article  Google Scholar 

  29. H. Usui, T. Sasaki, N. Koshizaki, Appl. Phys. Lett. 87, 063105 (2005)

    Article  ADS  Google Scholar 

  30. R. Sugiyama, T. Asahi, Chem. Rec. 11, 54 (2011)

    Article  Google Scholar 

  31. H. Wang, A. Pyatenko, K. Kawaguchi, X. Li, Z. Swiatkowska-Warkocka, N. Koshizaki, Angew. Chem., Int. Ed. 49, 6361 (2010)

    Article  Google Scholar 

  32. H. Wang, A. Pyatenko, K. Kawaguchi, X. Li, Z. Swiatkowska-Warkocka, N. Koshizaki, Angew. Chem. 122, 6505 (2010)

    Article  Google Scholar 

  33. S.C. Singh, R.W. Swarnkar, R. Gopal, Bull. Mater. Sci. 33, 21 (2010)

    Article  Google Scholar 

  34. H. Usui, Y. Shimizu, T. Sasaki, N. Koshizaki, J. Phys. Chem. B 109, 120 (2005)

    Article  Google Scholar 

  35. P. Wagener, S. Faramarzi, A. Schwenke, R. Rosenfeld, S. Barcikowski, Appl. Surf. Sci. 257, 7231 (2011)

    Article  ADS  Google Scholar 

  36. E. Volpert, J. Selb, F. Candau, Polymer 39, 1025 (1998)

    Article  Google Scholar 

  37. H. Muto, K. Yamada, K. Miyajima, F. Mafune, J. Phys. Chem. C 111, 17221 (2007)

    Article  Google Scholar 

  38. X. Gao, J. Chorover, J. Colloid Interface Sci. 348, 167 (2010)

    Article  Google Scholar 

  39. J. Lee, M.F. Becker, J.W. Keto, J. Appl. Phys. 89, 8146 (2001)

    Article  ADS  Google Scholar 

  40. M. Scepanovic, M. Gruji-Brojcin, K. Vojisavljevic, T. Srekovic, J. Appl. Phys. 109, 034313 (2011)

    Article  ADS  Google Scholar 

  41. M. Scepanovic, M. Grujic-Brojcin, K. Vojisavljevic, S. Bernik, T. Sreckovic, J. Raman Spectrosc. 41, 914 (2010)

    Article  ADS  Google Scholar 

  42. A. Stankovic, L. Veselinovic, S.D. Skapin, S. Markovic, D. Uskokovic, J. Mater. Sci. 46, 3716 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Parts of the experimental work have been carried out at Laser Zentrum Hannover e.V. Furthermore, we thank the Department of Pharmaceutics of TU Braunschweig for its support in XRD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Barcikowski.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 618 kB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagener, P., Lau, M., Breitung-Faes, S. et al. Physical fabrication of colloidal ZnO nanoparticles combining wet-grinding and laser fragmentation. Appl. Phys. A 108, 793–799 (2012). https://doi.org/10.1007/s00339-012-6971-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6971-x

Keywords

Navigation