Log in

Underwater femtosecond laser micromachining of thin nitinol tubes for medical coronary stent manufacture

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Microprofiling of medical coronary stents has been dominated by the use of Nd:YAG lasers with pulse lengths in the range of a few milliseconds, and material removal is based on the melt ejection with a high-pressure gas. As a result, recast and heat-affected zones are produced, and various post-processing procedures are required to remove these defects. This paper reports a new approach of machining stents in submerged conditions using a 100-fs pulsed laser. A comparison is given of dry and underwater femtosecond laser micromachining techniques of nickel–titanium alloy (nitinol) typically used as the material for coronary stents. The characteristics of laser interactions with the material have been studied. A femtosecond Ti:sapphire laser system (wavelength of 800 nm, pulse duration of 100 fs, repetition rate of 1 kHz) was used to perform the cutting process. It is observed that machining under a thin water film resulted in no presence of heat-affected zone, debris, spatter or recast with fine-cut surface quality. At the optimum parameters, the results obtained with dry cutting showed nearly the same cut surface quality as with cutting under water. However, debris and recast formation still appeared on the dry cut, which is based on material vaporization. Physical processes involved during the cutting process in a thin water film, i.e. bubble formation and shock waves, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. H.Y. Zheng, A.R. Zareena, H. Huang, G.C. Lim, Mater. Sci. Forum 437–438, 277 (2003)

    Article  Google Scholar 

  2. Y.P. Kathuria, in Int. Symp. Micromechatronics and Human Science (1998), p. 111

    Google Scholar 

  3. W. Liu, W. Du, J. Liao, Proc. SPIE 5629, 263 (2005)

    Article  ADS  Google Scholar 

  4. A. Raval, A. Choubey, C. Engineer, D. Kothwala, Mater. Sci. Eng. A 386(1–2), 331 (2004)

    Google Scholar 

  5. K.L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L.M. Raff, R. Komanduri, Mater. Sci. Eng. A 372, 145 (2004)

    Article  Google Scholar 

  6. A. Kruusing, Opt. Lasers Eng. 41, 307 (2004)

    Article  Google Scholar 

  7. J.J.J. Kaakkunen, M. Silvennoinen, K. Paivasaari, P. Vahimaa, Phys. Procedia 12(Part 2), 89 (2011)

    Article  Google Scholar 

  8. G. Daminelli, J. Krüger, W. Kautek, Thin Solid Films 467, 334 (2004)

    Article  ADS  Google Scholar 

  9. R. An, M.D. Hoffman, M.A. Danoghue, A.J. Hunt, S.C. Jacobson, Opt. Express 16, 15206 (2008)

    Article  ADS  Google Scholar 

  10. A. Kruusing, Opt. Lasers Eng. 41, 329 (2004)

    Article  Google Scholar 

  11. Y. Yan, L. Li, K. Sezer, W. Wang, D. Whitehead, L. Ji, Y. Bao, Y. Jiang, J. Eur. Ceram. Soc. 31(15), 2793 (2011)

    Article  Google Scholar 

  12. L. Li, C. Achara, CIRP Ann. Manuf. Technol. 53(1), 175 (2004)

    Article  Google Scholar 

  13. N. Muhammad, D. Whitehead, A. Boor, L. Li, J. Mater. Process. Technol. 210(15), 2261 (2010)

    Article  Google Scholar 

  14. H. Meng, J. Liao, Y. Zhou, Q. Zhang, Opt. Lasers Eng. 41, 300 (2009)

    Article  Google Scholar 

  15. R.C. Smith, K.S. Baker, Appl. Opt. 20(2), 177 (1981)

    Article  ADS  Google Scholar 

  16. E.-A. Giroux, M. Maglione, A. Gueldry, J.-L. Mantoux, J. Phys. D, Appl. Phys. 29, 923 (1996)

    Article  ADS  Google Scholar 

  17. R. Pfeifer, D. Herzog, M. Hustedt, S. Barcikowski, J. Mater. Process. Technol. 210(14), 1918 (2010)

    Article  Google Scholar 

  18. V. Tangwarodomnukun, J. Wang, P. Mathew, Key Eng. Mater. 443, 693 (2010)

    Article  Google Scholar 

  19. R. Fabbro, J. Fourntier, P. Ballard, D. Devaux, J. Virmont, J. Appl. Phys. 68(2), 775 (1990)

    Article  ADS  Google Scholar 

  20. Y. Han, C.-H. Lin, H. **ao, H.-L. Tsai, Microsyst. Technol. 15(7), 1045 (2009)

    Article  Google Scholar 

  21. T.A. Mai, Industrial Laser Solutions (PennWell, Oklahoma, 2008)

    Google Scholar 

  22. E. Ohmura, I. Miyamoto, I. Fukumoto, Proc. SPIE 4426, 66 (2002)

    Article  ADS  Google Scholar 

  23. D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, Appl. Phys. Lett. 64, 3071 (1994)

    Article  ADS  Google Scholar 

  24. E.-A. Brujan, A. Vogel, J. Fluid Mech. 558, 281 (2006)

    Article  ADS  MATH  Google Scholar 

  25. E. Boulais, R. Lachaine, M. Meunier, Proc. SPIE 7925 (2011)

  26. T. Matsumura, A. Kazama, T. Yagi, Appl. Phys. A, Mater. Sci. Process. 81(7), 1393 (2005)

    Article  ADS  Google Scholar 

  27. D.K.Y. Low, L. Li, P.J. Byrd, J. Mater. Process. Technol. 139(1–3), 71 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The first author (N. Muhammad) acknowledges the financial support from Universiti Malaysia Perlis (UniMAP) and the Ministry of Higher Education, Malaysia for her PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muhammad, N., Li, L. Underwater femtosecond laser micromachining of thin nitinol tubes for medical coronary stent manufacture. Appl. Phys. A 107, 849–861 (2012). https://doi.org/10.1007/s00339-012-6795-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6795-8

Keywords

Navigation