Log in

Impedance spectroscopy study of BNKLT polycrystalline ceramic

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Complex impedance analysis of perovskite structured polycrystalline, [Bi0.5(Na1−xy K x Li y )0.5]TiO3, at x=0.2, y=0.1 ceramic was synthesized by a mixed oxide method. The formation of single-phase material was confirmed by X-ray studies, and it was found to be rhombohedral structure at room temperature. Under scanning electron microscope, grains separated by well-defined boundaries are visible, which is in good agreement with impedance analysis. The BNKLT ceramic shows excellent piezoelectric properties and the optimum properties measured are: d 33=251 pC/N, g 33=24×10−3 mV/N, k p =30.5% and k t =28.1%. A complex impedance spectroscopy (CIS) study has been carried out to investigate the electrical properties. Impedance and modulus plots helped to separate the grain and grain boundary to the overall polarization or electrical behavior. CIS analysis suggests the presence of temperature-dependent relaxation process in the material. A possible hop** mechanism for electrical transport processes in the studied material is evident from the modulus analysis. The modulus mechanism indicates the non-Debye type of conductivity relaxation in the materials, which is supported by impedance data. The activation energies have been calculated from impedance (E τ =0.58 eV) and electric modulus (E τ =0.40 eV) studies, which suggests that the conduction is ionic in nature. The variation in width of the curves, \(M''/M''_{\max}\) and \(Z''/Z''_{\max}\) at FWHM, allows to conform that the relaxation process involved is of non-Debye type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.D. Megaw, Ferroelectricity in Crystals (Methun, London, 1957)

    Google Scholar 

  2. W.G. Cady, Piezoelectricity (Dover Publication, New York, 1962)

    Google Scholar 

  3. J.C. Burfoot, Ferroelectrics (Van Nostrand, New York, 1967)

    Google Scholar 

  4. M. Deri, Ferroelectric Ceramics (Gordon & Breach, New York, 1969)

    Google Scholar 

  5. B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971)

    Google Scholar 

  6. S.B. Lang, Sourcebook of Pyroelectricity (Gordon and Breach, New York, 1974)

    Google Scholar 

  7. R.E. Newnham, Structure–Property Relations (Springer, New York, 1975)

    Google Scholar 

  8. T. Mitsui, I. Tatsuzaki, E. Nakamura, An Introduction to the Physics of Ferroelectrics (Gordon & Breach, London, 1976)

    Google Scholar 

  9. M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectric and Related Materials (Clarendon Press, Oxford, 1977)

    Google Scholar 

  10. J.M. Herbert, Ferroelectric Transducers and Sensors (Gordon & Breach, London, 1982)

    Google Scholar 

  11. R.C. Buchanan (ed.), Ceramic Materials for Electronics-Processing, Properties and Applications (Dekker, New York, 1986)

    Google Scholar 

  12. L.M. Levinson (ed.), Electronic Ceramics-Properties, Devices and Applications (Dekker, New York, 1987)

    Google Scholar 

  13. A.J. Moulson, J.M. Herbert, Electroceramics, Materials, Properties and Applications (Chapman & Hall, London, 1990)

    Google Scholar 

  14. J.F. Nye, Physical Properties of Crystals (Clarendon, Oxford, 1990)

    Google Scholar 

  15. Y. Xu, Ferroelectric Materials and their Applications (North-Holland, Amsterdam, 1991)

    Google Scholar 

  16. G.H. Haertling, J. Am. Ceram. Soc. 82(4), 797 (1999)

    Article  Google Scholar 

  17. J. Ravez, Solid State Chem. Cryst. Chem. 3, 267 (2000)

    Google Scholar 

  18. J.F. Scott, J. Phys. Chem. Solids 57(10), 1439 (1996)

    Article  ADS  Google Scholar 

  19. T. Takennaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. I 30, 2236 (1991)

    Article  ADS  Google Scholar 

  20. J. Yoo, D. Oh, Y. Jeong, J. Hong, M. Jung, Mater. Lett. 58, 3821 (2004)

    Article  Google Scholar 

  21. H. Ishii, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 40, 5660 (2001)

    Article  ADS  Google Scholar 

  22. T. Takenaka, T. Okuda, K. Takegahara, Ferroelectrics 196, 175 (1997)

    Article  Google Scholar 

  23. H. Nagata, N. Koizumi, T. Takenaka, Key Eng. Mater. 37, 169 (1999)

    Google Scholar 

  24. A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Jpn. J. Appl. Phys. 38, 5564 (1999)

    Article  ADS  Google Scholar 

  25. B.D. Cullity, Elements of X-ray diffraction (Addison-Wesley, Reading, 1978)

    Google Scholar 

  26. J. Suchanicz, Mater. Sci. Eng. B, Solid-State Mater. Adv. Technol. 55, 114–118 (1998)

    Google Scholar 

  27. J. Plocharski, W. Wieczoreck, Solid State Ion. 28, 979–982 (1988)

    Article  Google Scholar 

  28. S.P. Singh, A.K. Singh, D. Pandey, J. Mater. Res. 18, 1 (2003)

    Article  MathSciNet  Google Scholar 

  29. M.A.L. Nobtre, S. Lanfredi, Matter. Lett. 47, 362 (2001)

    Article  Google Scholar 

  30. M.A.L. Nobtre, S. Lanfredi, Appl. Phys. Lett. 81, 451 (2002)

    Article  ADS  Google Scholar 

  31. S. Sen, P. Pramanik, R.N.P. Choudhary, Appl. Phys. A 82, 549 (2006)

    Article  ADS  Google Scholar 

  32. M.M. Kumar, Z.G. Ze, J. Appl. Phys. 90, 934 (2001)

    Article  ADS  Google Scholar 

  33. M.A.L. Nobtre, S. Lanfredi, J. Phys. Chem. Solids 64, 2457 (2003)

    Article  ADS  Google Scholar 

  34. P.L. Bonora, F. Deflorian, L. Fedrizzi, Electrochim. Acta 41, 1073 (1996)

    Article  Google Scholar 

  35. S. Dutta, R.N.P. Choudhary, R.K. Sinha, Ceram. Int. 33, 13 (2007)

    Article  Google Scholar 

  36. K. Prasad, K.L. Kumari, K.P. Chandra, K.L. Yadav, S. Sen, Appl. Phys. A, Mater. Sci. Process. 88, 377 (2007)

    Article  ADS  Google Scholar 

  37. K. Sambasiva Rao, P. Murali Krishna, D. Madhava Prasad, J.H. Lee, J. Phys. Chem. Solids 70, 1231 (2009)

    Article  ADS  Google Scholar 

  38. I.M. Hogde, M.D. Ingram, A.R. West, J. Electroanal. Chem. Interfacial Electrochem. 58, 429 (1975)

    Article  Google Scholar 

  39. D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)

    Article  ADS  Google Scholar 

  40. S.K. Barik, R.N.P. Choudhary, P.K. Mahapatra, Appl. Phys. A, Mater. Sci. Process. 88, 217–222 (2007)

    Article  ADS  Google Scholar 

  41. G. Williams, D.C. Watts, Trans. Faraday Soc. 66, 80 (1970)

    Article  Google Scholar 

  42. C.T. Moynihan, L.P. Boesch, N.L. Laberge, J. Phys. Chem. 78, 122 (1974)

    Article  Google Scholar 

  43. M.M. Kumar, Z.G. Ze, J. Appl. Phys. 90, 934 (2001)

    Article  ADS  Google Scholar 

  44. K.S. Cole, R.H. Cole, J. Chem. Phys. 9, 341 (1941)

    Article  ADS  Google Scholar 

  45. S. Dundarakannan, K. Kakimoto, H. Ohsato, J. Appl. Phys. 9, 5182 (2003)

    Article  Google Scholar 

  46. S. Bu, D. Chun, G. Park, J. Korean Phys. Soc. 31, 223 (1997)

    Google Scholar 

  47. R. Gerhardt, J. Phys. Chem. Solids 55(12), 1491 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ch. Varada Rajulu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varada Rajulu, K.C., Tilak, B. & Sambasiva Rao, K. Impedance spectroscopy study of BNKLT polycrystalline ceramic. Appl. Phys. A 106, 533–543 (2012). https://doi.org/10.1007/s00339-011-6631-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6631-6

Keywords

Navigation