Log in

Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Three-dimensional, permanent anisotropic modifications in glass containing spherical Ag nanoparticles are demonstrated using multicolor fs laser irradiation. The method can produce dichroism by deformation of nanoparticles to oblong shapes oriented parallel to the laser polarization. Using samples with a vertical gradient of the fill factor of Ag nanoparticles in the glass substrate and an accordingly inhomogeneous broadening of the surface plasmon band, modifications in various depths can be made using different excitation wavelengths. The induced modifications are reversible: heating to ≈600 °C restores the spherical shape of Ag nanoparticles. This technique could be used in manufacturing of different, 3D, polarization and wavelength selective micro-devices such as polarizers, filters, gratings, display and rewriting optical 3D data storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Kreibig, M. Vollmer: Optical Properties of Metal Clusters, Springer Series in Materials Science, Vol. 25 (Springer, Berlin 1995)

  2. V.M. Shalaev: Optical Properties of Nanostructured Random Media (Springer, Berlin 2001)

  3. J. Tominaga, D.P. Tsai: The Manipulation of Surface and Local Plasmons, Topics in Applied Physics (Springer, Berlin 2003)

  4. T. Wenzel, J. Bosbach, A. Goldmann, F. Stietz, F. Träger: Appl. Phys. B 69, 513 (1999)

    Article  CAS  Google Scholar 

  5. F. Stietz: Appl. Phys. A 72, 381 (2001)

    CAS  Google Scholar 

  6. R. **, Y.W. Cao, C.A. Mirkin, K.L. Kelly, G.C. Schatz, J.G. Zheng: Science 249, 1901 (2001)

    Google Scholar 

  7. M. Kaempfe, H. Graener, A. Kiesow, A. Heilmann: Appl. Phys. Lett. 79, 1876 (2001)

    Article  CAS  Google Scholar 

  8. A.L. Stepanov, D.E. Hole, A.A. Bukharaev, P.D. Townsend, N.I. Nurgazizov: Appl. Surf. Sci. 136, 298 (1998)

    Article  CAS  Google Scholar 

  9. I. Zergioti, S. Mailis, N.A. Vainos, P. Papakonstantinou, C. Kalpouzos, C.P. Grigoropoulos, C. Fotakis: Appl. Phys. A 66, 579 (1998)

    Article  Google Scholar 

  10. E.J. Bjerneld, F. Svedberg, M. Kaell: Nano Lett. 3, 593 (2003)

    Article  CAS  Google Scholar 

  11. M. Kaempfe, G. Seifert, K.-J. Berg, H. Hofmeister, H. Graener: Eur. Phys. J. D 16, 237 (2001)

    Article  CAS  Google Scholar 

  12. M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, H. Graener: Appl. Phys. Lett. 74, 1200 (1999)

    Article  CAS  Google Scholar 

  13. G. Seifert, M. Kaempfe, K.-J. Berg, H. Graener: Appl. Phys. B 71, 795 (2000)

    Google Scholar 

  14. G. Seifert, M. Kaempfe, K.-J. Berg, H. Graener: Appl. Phys. B. 73, 355 (2001)

    Article  CAS  Google Scholar 

  15. A.V. Podlipensky, V. Grebenev, G. Seifert, H. Graener: J. Lumin. 109, 135 (2004)

    Article  CAS  Google Scholar 

  16. G. Mie: Ann. Phys. (Leipzig) 25, 377 (1908)

    CAS  Google Scholar 

  17. C.F. Bohren, D.R. Huffman: Absorption and Scattering of Light by Small Particles (Wiley Science Paperback Series, New York 1998)

  18. J.P. Marton, J.R. Lemon: Phys. Rev. B 4, 271 (1971)

    Article  Google Scholar 

  19. G. Xu, M. Tazawa, P. **, S. Nakao: Appl. Phys. A 78, 1011 (2004)

    Article  Google Scholar 

  20. V.A. Markel, L.S. Muratov, M.I. Stockman, T.F. George: Phys. Rev. B 43, 8183 (1991)

    Article  Google Scholar 

  21. V.A. Markel, V. Shalaev, E.B. Stechel, W. Kim, R.L. Armstrong: Phys. Rev. B 53, 2425 (1996)

    Article  CAS  Google Scholar 

  22. S.V. Karpov, A. L. Bas’ko, A.K. Popov, V.V. Slabko, T.F. George: In: Recent Research Developments in Optics, Vol. 2, pp. 427–463 (Research Signpost, Trivandrum, India 2002)

  23. K.-J. Berg, A. Berger, H. Hofmeister: Z. Phys. D 20, 309 (1991)

    Article  CAS  Google Scholar 

  24. W. Gotsky, K. Vonmentz, A. Leitner, F.R. Aussenegg: Opt. Lett. 21, 1099 (1996)

    Google Scholar 

  25. K.L. Kelly, E. Coronado, L.N. Zhao, G.C. Schatz: J. Phys. Chem. B 107, 668 (2003).

    Article  CAS  Google Scholar 

  26. W. Pfeiffer, C. Kennerknecht, M. Merschdorf: Appl. Phys. A, DOI: 10.1007/s00339-003-2395-y (2004)

  27. B. Lamprecht, A. Leitner, F.G. Ausseneg: Appl. Phys. B 64, 269 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Seifert.

Additional information

PACS

78.55.Hx; 78.67.Bf; 78.40.Ha

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podlipensky, A., Abdolvand, A., Seifert, G. et al. Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles. Appl. Phys. A 80, 1647–1652 (2005). https://doi.org/10.1007/s00339-004-3090-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-3090-3

Keywords

Navigation